Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene: What can go wrong? new studies point to wrinkles, process contaminants

08.07.2011
Using a combination of sophisticated computer modeling and advanced materials analysis techniques at synchrotron laboratories, a research team led by the University at Buffalo (UB) and including the National Institute of Standards and Technology (NIST), the Molecular Foundry at Lawrence Berkeley National Laboratory and SEMATECH* has demonstrated how some relatively simple processing flaws can seriously degrade the otherwise near-magical electronic properties of graphene.

Their new paper** demonstrates how both wrinkles in the graphene sheet and/or chance contaminants from processing—possibly hiding in those folds—disrupt and slow electron flow across the sheet. The results could be important for the design of commercial manufacturing processes that exploit the unique electrical properties of graphene. In the case of contaminant molecules at least, the paper also suggests that heating the graphene may be a simple solution.

Graphene, a nanostructured material that is essentially a one-atom thick sheet of carbon atoms arranged in a hexagonal pattern, is under intense study because of a combination of outstanding properties. It's extremely strong, conducts heat very well, and has high electrical conductivity while being flexible and transparent. Graphene's electrical properties, however, apparently depend a lot on flatness and purity.

Using X-rays, the UB team produced images that show the electron "cloud" lining the surface of graphene samples—the structure responsible for the high-speed transit of electrons across the sheet—and how wrinkles in the sheet distort the cloud and create bottlenecks. Spectrographic data showed anomalous "peaks" in some regions that also corresponded to distortions of the cloud. NIST researchers, using their dedicated materials science "beam line" at the National Synchrotron Light Source (NSLS),*** contributed a sensitive analysis of spectroscopic data confirming that these peaks were caused by chemical contaminants that adhered to the graphene during processing.

Significantly, the NIST synchrotron methods group was able to make detailed spectroscopic measurements of the graphene samples while heating them, and found that the mysterious peaks disappeared by the time the sample reached 150 degrees Celsius. This, according to Dan Fischer, leader of the NIST group, showed both that those particular disturbances in the electron cloud were due to contaminants, and that there is a way to get rid of them. "They're not chemical bound, they're just physically absorbed on the surface, and that's an important thing. You have a prescription for getting rid of them," Fischer said.

"When graphene was discovered, people were just so excited that it was such a good material that people really wanted to go with it and run as fast as possible," said Brian Schultz, one of three UB graduate students who were lead authors on the paper, "but what we're showing is that you really have to do some fundamental research before you understand how to process it and how to get it into electronics."

"This is the practical side of using graphene," agrees Fischer, "It has all these remarkable properties, but when you go to actually try to make something, maybe they stop working, and the question is: why and what do you do about it? These kinds of extremely sensitive, specialized techniques are part of that answer."

For more on the study, see the UB June 28, 2011, news announcement "Researchers Image Electron Clouds on the Surface of Graphene, Revealing How Folds in the Remarkable Material Can Harm Conductivity" at www.buffalo.edu/news/12673.

* SEMATECH is a nonprofit research consortium that advances the U.S. semiconductor industry.

** B.J. Schultz, C. J. Patridge, V. Lee, C. Jaye, P.S. Lysaght, C. Smith, J. Barnett, D.A. Fischer, D. Prendergast and S. Banerjee. Imaging local electronic corrugations and doped regions in graphene. Nature Communications. V2, 372. Published on-line June 28, 2011. doi:10.1038/ncomms1376.

*** The NSLS is located at the Brookhaven National Laboratory.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>