Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene Researchers Create “Superheated” Water That Can Corrode Diamonds

12.03.2013
A team of researchers from the National University of Singapore (NUS) led by Professor Loh Kian Ping, Head of the Department of Chemistry at the NUS Faculty of Science, has successfully altered the properties of water, making it corrosive enough to etch diamonds.

This was achieved by attaching a layer of graphene on diamond and heated to high temperatures. Water molecules trapped between them become highly corrosive, as opposed to normal water.

This novel discovery, reported for the first time, has wide-ranging industrial applications, from environmentally-friendly degradation of organic wastes to laser-assisted etching of semiconductor or dielectric films.

The findings were published online in Nature Communications on 5 March 2013 with Ms Candy Lim Yi Xuan, a Ph.D. candidate at the NUS Graduate School for Integrative Sciences and Engineering as the first author.

When Diamond Meets Graphene
While diamond is known to be a material with superlative physical qualities, little is known about how it interfaces with graphene, a one-atom thick substance composed of pure carbon.

A team of scientists from NUS, Bruker Singapore and Hasselt University Wetenschapspark in Belgium, sought to explore what happens when a layer of graphene, behaving like a soft membrane, is attached on diamond, which is also composed of carbon. To encourage bonding between the two rather dissimilar carbon forms, the researchers heated them to high temperatures.

At elevated temperatures, the team noted a restructuring of the interface and chemical bonding between graphene and diamond. As graphene is an impermeable material, water trapped between the diamond and graphene cannot escape. At a temperature that is above 400 degree Celsius, the trapped water transforms into a distinct supercritical phase, with different behaviours compared to normal water.

Said Professor Loh, who is also a Principal Investigator with the Graphene Research Centre at NUS, “We show for the first time that graphene can trap water on diamond, and the system behaves like a ‘pressure cooker’ when heated. Even more surprising, we found that such superheated water can corrode diamond. This has never been reported.”

Industrial Applications and New Insights

Due to its transparent nature, the graphene bubble-on-diamond platform provides a novel way of studying the behaviours of liquids at high pressures and high temperature conditions, which is traditionally difficult.

“The applications from our experiment are immense. In the industry, supercritical water can be used for the degradation of organic waste in an environmentally friendly manner. Our work can is also applicable to the laser-assisted etching of semiconductor or dielectric films, where the graphene membrane can be used to trap liquids,” Prof Loh elaborated.

To further their research, Prof Loh and his team will study the supercritical behaviours of other fluids at high temperatures, and strive to derive a wider range of industrial applications.

Carolyn FONG | Newswise
Further information:
http://www.nus.edu.sg

Further reports about: Diamond NUS Singapore Water Snake graphene high temperatures organic waste

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>