Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene plasmonics beats the drug cheats

14.01.2013
Writing in Nature Materials, the scientists, working with colleagues from Aix-Marseille University, have created a device which potentially can see one molecule though a simple optical system and can analyse its components within minutes. This uses plasmonics – the study of vibrations of electrons in different materials.

The breakthrough could allow for rapid and more accurate drug testing for professional athletes as it could detect the presence of even trace amounts of a substance.

It could also be used at airports or other high-security locations to prevent would-be terrorists from concealing explosives or traffickers from smuggling drugs. Another possible use could be detecting viruses people might be suffering from.

Graphene, isolated for the first time at The University of Manchester in 2004, has the potential to revolutionise diverse applications from smartphones and ultrafast broadband to drug delivery and computer chips.

It has the potential to replace existing materials, such as silicon, but University of Manchester researchers believe it could truly find its place with new devices and materials yet to be invented.

The researchers, lead by Dr Sasha Grigorenko, suggested a new type of sensing devices: artificial materials with topological darkness. The devices show extremely high response to an attachment of just one relatively small molecule. This high sensitivity relies on topological properties of light phase.

To test their devices, researches covered them with graphene. They then introduced hydrogen onto the graphene, which allowed them to calibrate their devices with far superior sensitivity than with any other material.

Testing for toxins or drugs could be done using a simple blood test, with highly-accurate results in minutes. The researchers found that the sensitivity of their devices is three orders of magnitude better than that of existing models.

The academics, from the School of Physics and Astronomy, hope the research will show the practical applications from an emerging area of research – singular optics.

Dr Grigorenko said: "The whole idea of this device is to see single molecules, and really see them, under a simple optical system, say a microscope.

"The singular optics which utilise the unusual phase properties of light is a big and emerging field of research, and we have shown how it can have practical applications which could be of great benefit.

"Graphene was one of the best materials we could have used to measure the sensitivity of these molecules. It is so easy to put the hydrogen on to it in controlled way.

"We are only starting to scratch the surface of what this research might tell us but it could have profound implications for drug detection, security and viruses."

Professor Andre Geim and Professor Kostya Novoselov won the Nobel prize for Physics in 2010 for their groundbreaking work on graphene.

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>