Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene plasmonics beats the drug cheats

14.01.2013
Writing in Nature Materials, the scientists, working with colleagues from Aix-Marseille University, have created a device which potentially can see one molecule though a simple optical system and can analyse its components within minutes. This uses plasmonics – the study of vibrations of electrons in different materials.

The breakthrough could allow for rapid and more accurate drug testing for professional athletes as it could detect the presence of even trace amounts of a substance.

It could also be used at airports or other high-security locations to prevent would-be terrorists from concealing explosives or traffickers from smuggling drugs. Another possible use could be detecting viruses people might be suffering from.

Graphene, isolated for the first time at The University of Manchester in 2004, has the potential to revolutionise diverse applications from smartphones and ultrafast broadband to drug delivery and computer chips.

It has the potential to replace existing materials, such as silicon, but University of Manchester researchers believe it could truly find its place with new devices and materials yet to be invented.

The researchers, lead by Dr Sasha Grigorenko, suggested a new type of sensing devices: artificial materials with topological darkness. The devices show extremely high response to an attachment of just one relatively small molecule. This high sensitivity relies on topological properties of light phase.

To test their devices, researches covered them with graphene. They then introduced hydrogen onto the graphene, which allowed them to calibrate their devices with far superior sensitivity than with any other material.

Testing for toxins or drugs could be done using a simple blood test, with highly-accurate results in minutes. The researchers found that the sensitivity of their devices is three orders of magnitude better than that of existing models.

The academics, from the School of Physics and Astronomy, hope the research will show the practical applications from an emerging area of research – singular optics.

Dr Grigorenko said: "The whole idea of this device is to see single molecules, and really see them, under a simple optical system, say a microscope.

"The singular optics which utilise the unusual phase properties of light is a big and emerging field of research, and we have shown how it can have practical applications which could be of great benefit.

"Graphene was one of the best materials we could have used to measure the sensitivity of these molecules. It is so easy to put the hydrogen on to it in controlled way.

"We are only starting to scratch the surface of what this research might tell us but it could have profound implications for drug detection, security and viruses."

Professor Andre Geim and Professor Kostya Novoselov won the Nobel prize for Physics in 2010 for their groundbreaking work on graphene.

Daniel Cochlin | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Materials Sciences:

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

nachricht Here's a tip: Indented cement shows unique properties
20.07.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>