Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Graphene oxide gets green

Rice researchers show environmentally friendly ways to make it in bulk, break it down

"We can make you and we can break you." If Rice University scientists wrote country songs, their ode to graphene oxide would start something like that. But this song wouldn't break anybody's heart.

A new paper from the lab of Rice chemist James Tour demonstrates an environmentally friendly way to make bulk quantities of graphene oxide (GO), an insulating version of single-atom-thick graphene expected to find use in all kinds of material and electronic applications.

A second paper from Tour and Andreas Lüttge, a Rice professor of Earth science and chemistry, shows how GO is broken down by common bacteria that leave behind only harmless, natural graphite.

The one-two punch appears online this week in the journal ACS Nano.

"These are the pillars that make graphene oxide production practical," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science. The GO manufacturing process was developed as part of a research project with M-I SWACO, a Houston-based producer of drilling fluids for the petrochemical industry that hopes to use graphene to improve the productivity of wells. (Read about that here.)

Scientists have been making GO since the 19th century, but the new process eliminates a significant stumbling block to bulk production, Tour said. "People were using potassium chlorate or sodium nitrates that release toxic gases – one of which, chlorine dioxide, is explosive," he said. "Manufacturers are always reluctant to go to a large scale with any process that generates explosive intermediates."

Tour and his colleagues used a process similar to the one they employed to unzip multiwalled nanotubes into graphene nanoribbons, as described in a Nature paper last year. They process flakes of graphite – pencil lead – with potassium permanganate, sulfuric acid and phosphoric acid, all common, inexpensive chemicals.

"Many companies have started to make graphene and graphene oxide, and I think they're going to be very hard pressed to come up with a cheaper procedure that's this efficient and as safe and environmentally friendly," Tour said.

The researchers suggested the water-soluble product could find use in polymers, ceramics and metals, as thin films for electronics, as drug-delivery devices and for hydrogen storage, as well as for oil and gas recovery.

Though GO is a natural insulator, it could be chemically reduced to a conductor or semiconductor, though not without defects, Tour said.

With so many potential paths into the environment, the fate of GO nanomaterials concerned Tour, who sought the advice of Rice colleague Lüttge.

Lüttge and Everett Salas, a postdoctoral researcher in his lab and primary author of the second paper, had already been studying the effects of bacteria on carbon, so it was simple to shift their attention to GO. They found bacteria from the genus Shewanella easily convert GO to harmless graphene. The graphene then stacks itself into graphite.

"That's a big plus for green nano, because these ubiquitous bacteria are quickly converting GO into an environmentally benign mineral," Tour said.

Essentially, Salas said, Shewanella have figured out how to "breathe" solid metal oxides. "These bacteria have turned themselves inside out. When we breathe oxygen, the reactions happen inside our cells. These microbes have taken those components and put them on the outside of their cells."

It is this capability that allows them to reduce GO to graphene. "It's a mechanism we don't understand completely because we didn't know it was possible until a few months ago," he said of the process as it relates to GO.

The best news of all, Lüttge said, is that these metal-reducing bacteria "are found pretty much everywhere, so there will be no need to 'inoculate' the environment with them," he said. "These bacteria have been isolated from every imaginable environment – lakes, the sea floor, river mud, the open ocean, oil brines and even uranium mines."

He said the microbes also turn iron, chromium, uranium and arsenic compounds into "mostly benign" minerals. "Because of this, they're playing a major role in efforts to develop bacteria-based bioremediation technologies."

Lüttge expects the discovery will lead to other practical technologies. His lab is investigating the interaction between bacteria and graphite electrodes to develop microbe-powered fuel cells, in collaboration with the Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative (MURI).

Co-authors of the first paper, "Improved Synthesis of Graphene Oxide," include postdoctoral research associates Dmitry Kosynkin, Jacob Berlin and Alexander Sinitskii; senior research scientist Lawrence Alemany; graduate students Daniela Marcano, Zhengzong Sun and Wei Lu and visiting research student Alexander Slesarev, all of Rice.

Salas, Tour, Lüttge and Sun are co-authors of the second paper, "Reduction of Graphene Oxide via Bacterial Respiration."

Funding for the projects came from the Alliance for NanoHealth, M-I SWACO, the Air Force Research Laboratory through the University Technology Corporation, the Department of Energy's Office of Energy Efficiency and Renewable Energy within the Hydrogen Sorption Center of Excellence, the Office of Naval Research MURI program on graphene, the Air Force Office of Scientific Research and the Federal Aviation Administration.

Read the abstract for "Improved Synthesis of Graphene Oxide" at

Read the abstract for "Reduction of Graphene Oxide via Bacterial Respiration" at

David Ruth | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>