Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene's strength lies in its defects

12.11.2010
The website of the Nobel Prize shows a cat resting in a graphene hammock. Although fictitious, the image captures the excitement around graphene, which, at one atom thick, is the among the thinnest and strongest materials ever produced.

A significant obstacle to realizing graphene's potential lies in creating a surface large enough to support a theoretical sleeping cat. For now, material scientists stitch individual graphene sheets together to create sheets that are large enough to investigate possible applications.

Just as sewing patches of fabric together may create weaknesses where individual patches meet, defects can weaken the "grain boundaries" where graphene sheets are stitched together — at least that is what engineers had thought.

Now, engineers at Brown University and the University of Texas–Austin have discovered that the grain boundaries do not compromise the material's strength. The grain boundaries are so strong, in fact, that the sheets are nearly as strong as pure graphene. The trick, they write in a paper published in Science, lies in the angles at which the individual sheets are stitched together.

"When you have more defects, you expect the strength to be compromised," said Vivek Shenoy, professor of engineering and the paper's corresponding author, "but here it is just the opposite."

The finding may propel development of larger graphene sheets for use in electronics, optics and other industries.

Graphene is a two-dimensional surface composed of strongly bonded carbon atoms in a nearly error-free order. The basic unit of this lattice pattern consists of six carbon atoms joined together chemically. When a graphene sheet is joined with another graphene sheet, some of those six-carbon hexagons become seven-carbon bonds — heptagons. The spots where heptagons occur are called "critical bonds."

The critical bonds, located along the grain boundaries, had been considered the weak links in the material. But when Shenoy and Rassin Grantab, a fifth-year graduate student, analyzed how much strength is lost at the grain boundaries, they learned something different.

"It turns out that these grain boundaries can, in some cases, be as strong as pure graphene," Shenoy said.

The engineers then set out to learn why. Using atomistic calculations, they discovered that tilting the angle at which the sheets meet — the grain boundaries — influenced the material's overall strength. The optimal orientation producing the strongest sheets, they report, is 28.7 degrees for sheets with an armchair pattern and 21.7 degrees for sheets with a zigzag layout. These are called large-angle grain boundaries.

Large-angle grain boundaries are stronger because the bonds in the heptagons are closer in length to the bonds naturally found in graphene. That means in large-angle grain boundaries, the bonds in the heptagons are less strained, which helps explain why the material is nearly as strong as pure graphene despite the defects, Shenoy said.

"It's the way the defects are arranged," Shenoy said. "The grain boundary can accommodate the heptagons better. They're more relaxed."

Rodney Ruoff from the University of Texas–Austin's Department of Mechanical Engineering is a contributing author on the paper. The National Science Foundation and the Semiconductor Research Corporation's Nanoelectronics Research Initiative funded the research.

Courtney Anderson | EurekAlert!
Further information:
http://www.brown.edu

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>