Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphane yields new potential

26.05.2010
Rice physicists dig theoretical wells to mine quantum dots

Graphane is the material of choice for physicists on the cutting edge of materials science, and Rice University researchers are right there with the pack – and perhaps a little ahead.

Researchers mentored by Boris Yakobson, a Rice professor of mechanical engineering and materials science and of chemistry, have discovered the strategic extraction of hydrogen atoms from a two-dimensional sheet of graphane naturally opens up spaces of pure graphene that look – and act – like quantum dots.

That opens up a new world of possibilities for an ever-shrinking class of nanoelectronics that depend on the highly controllable semiconducting properties of quantum dots, particularly in the realm of advanced optics.

The theoretical work by Abhishek Singh and Evgeni Penev, both postdoctoral researchers in co-author Yakobson's group, was published online last week in the journal ACS Nano and will be on the cover of the print version in June. Rice was recently named the world's No. 1 institution for materials science research by a United Kingdom publication.

Graphene has become the Flat Stanley of materials. The one-atom-thick, honeycomb-like form of carbon may be two-dimensional, but it seems to be everywhere, touted as a solution to stepping beyond the limits of Moore's Law.

Graphane is simply graphene modified by hydrogen atoms added to both sides of the matrix, which makes it an insulator. While it's still technically only a single atom thick, graphane offers great possibilities for the manipulation of the material's semiconducting properties.

Quantum dots are crystalline molecules from a few to many atoms in size that interact with light and magnetic fields in unique ways. The size of a dot determines its band gap – the amount of energy needed to close the circuit – and makes it tunable to a precise degree. The frequencies of light and energy released by activated dots make them particularly useful for chemical sensors, solar cells, medical imaging and nanoscale circuitry.

Singh and Penev calculated that removing islands of hydrogen from both sides of a graphane matrix leaves a well with all the properties of quantum dots, which may also be useful in creating arrays of dots for many applications.

"We arrived at these ideas from an entirely different study of energy storage in a form of hydrogen adsorption on graphene," Yakobson said. "Abhishek and Evgeni realized that this phase transformation (from graphene to graphane), accompanied by the change from metal to insulator, offers a novel palette for nanoengineering."

Their work revealed several interesting characteristics. They found that when chunks of the hydrogen sublattice are removed, the area left behind is always hexagonal, with a sharp interface between the graphene and graphane. This is important, they said, because it means each dot is highly contained; calculations show very little leakage of charge into the graphane host material. (How, precisely, to remove hydrogen atoms from the lattice remains a question for materials scientists, who are working on it, they said.)

"You have an atom-like spectra embedded within a media, and then you can play with the band gap by changing the size of the dot," Singh said. "You can essentially tune the optical properties."

Along with optical applications, the dots may be useful in single-molecule sensing and could lead to very tiny transistors or semiconductor lasers, he said.

Challenges remain in figuring out how to make arrays of quantum dots in a sheet of graphane, but neither Singh nor Penev sees the obstacles as insurmountable.

"We think the major conclusions in the paper are enough to excite experimentalists," said Singh, who will soon leave Rice to become an assistant professor at the Indian Institute of Science in Bangalore. "Some are already working in the directions we explored."

"Their work is actually supporting what we're suggesting, that you can do this patterning in a controlled way," Penev said.

When might their calculations bear commercial fruit? "That's a tough question," Singh said. "It won't be that far, probably -- but there are challenges. I don't know that we can give it a time frame, but it could happen soon."

Funding from the Office of Naval Research supported the work. Computations were performed at the Department of Defense Supercomputing Resource Center at the Air Force Research Laboratory.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>