Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graffiti-free historic buildings

14.09.2009
Many a historic landmark is defaced with graffiti, but the spray paint can only be removed – if at all – using caustic solutions which risk damaging the underlying surface. A new breathable coating provides efficient, all-round protection against attacks by taggers.

It takes seconds to spray on graffiti, but hours or weeks to remove – especially from porous natural stone or brickwork as found in the majority of historic monuments. The paint penetrates deep into the pores from which it is impossible to remove, even with a pressure hose or multi-component solvents.

Often the only answer, other than living with the graffiti, is to etch away a part of the wall. Special anti-graffiti polymer coatings have been on the market for several years.

They create a hydrophobic seal that closes the pores, preventing the paint from adhering to the undersurface and allowing it to be wiped off. But as a result the building can no longer breathe, augmenting the risk of mold development or salt efflorescence. Because they cannot be removed easily, such coatings also run counter to the principles of conservation, which require that any changes must be reversible.

“There are conflicting requirements for this kind of polymer coating – it mustn’t seal the pores, because it is important that there should be a continuous exchange of air between the building and the external environment, and at the same time it has to prevent the spray paint from penetrating the pores. The coating needs to be sufficiently resistant to withstand both weathering and mechanical cleaning. Moreover, since we’re dealing with historic landmarks, it must be possible to completely remove the coating from the walls if required, to restore them to their original condition with little effort and without damaging the structure,” says Professor André Laschewsky, who heads the relevant research group at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam.

As part of an EU-sponsored project, Laschewsky’s team and partners from the Center of Polymer and Carbon Materials of the Polish Academy of Sciences in Gliwice and Zabrze have developed a polymer coating that meets these requirements. “Our innovative polymer film seals the pores in the substrate, so that graffiti paint doesn’t penetrate. But its micro-porous structure also creates a hydrophobic barrier that allows water vapor to escape from the building while at the same time preventing the infiltration of rainwater,” says Laschewsky.

The coating can be removed from the surface using a diluted brine solution which modifies its chemical composition and allows it to be washed off. Coordinated by the LABEIN Foundation in Spain and the german Federal Institute for Materials Research and Testing the partners have coated samples of ancient stone and brick and repeatedly covered them with graffiti – which was removed completely each time.

Prof. Dr. Andre Laschewsky | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>