Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold surfaces repair themselves at room temperature

19.10.2011
Micromechanical systems and electric switches are based on smallest sliding contacts. They only work without loss of energy or material, if the surfaces are very smooth and without any defects.

So far, little has been understood about the underlying atomic-scale principles. In cooperation with researchers at the universities of Münster and Gießen as well as the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, scientists at the INM – Leibniz Institute for New Materials were able to show that on atomic scale gold surfaces smoothen out by themselves at room temperature. In their publication in Physical Review Letters, they reveal that this effect disappears at low temperatures.

So far, it has been assumed that perfect sliding works the better the more rigid the surface is. On the atomic scale this could mean freezing lattice vibrations in the crystal at low temperatures below -100°C; where the atoms hardly move. Against expectation, smooth sliding on gold surfaces is not quite possible at these temperatures, but, however, at room temperature. The scientists explain this phenomenon with the diffusion of the gold atoms: If they are able to move freely on the surface, the gold atoms migrate into defects on the surfaces and remove holes and bumps. The diffusion effectively stops below -100°C.

"Imagine a record player whose needle made from rubber moves over a wax plate. If the wax is hard, wax pieces will be scratched out and, after a while, the needle pushes a pile of wax, which can only be surmounted by the needle after it bends strongly", explains Roland Bennewitz, Head of the Program Division "Nanotribology". If the temperature rises, the wax melts and the needle leaves no more traces in the wax. In fact, the liquid wax removes holes and bumps at once, and the needle slides uniformly through the wax.

A similar process occurs on the gold surfaces. Although they do not melt at room temperature, the diffusion of the gold atoms is so strong that smallest asperities on the nanoscale are removed at once. The regular structure of the surface is preserved.

Experiments were performed by atomic force microscopy (AFM). A thin needle slides forth and back on the gold surface. The measured signal shows how strong the needle bends in contact. On a crystalline surface, the needle "jumps" regularly from atom group to atom group – the scientists measure a stable so-called stick-slip pattern. In the event of defects, such as the accumulated gold atoms, the needle bends stronger and the stick-slip pattern will be broken.

In their research, the scientists also employed atomistic modelling on the computer. Here, they were able to reproduce the stick-slip pattern for the scanning of the gold surface with gold and nickel needles. With a 3D simulation, they were also able to show how gold atoms accumulate at low temperatures. The accumulated gold atoms are attracted by the needle like a liquid into a capillary.

Original publication:
Nitya Nand Gosvami, Michael Feldmann, Joël Peguiron, Michael Moseler, André Schirmeisen, and Roland Bennewitz:
„Ageing of a Microscopic Sliding Gold Contact at Low Temperatures“
Physical Review Letters 107, 144303 (2011)
DOI: 10.1103/PhysRevLett.107.144303
Contact:
Prof. Dr. Roland Bennewitz
INM - Leibniz-Institut für Neue Materialien gGmbH
Phone: (+49) 681 9300 213
Email: Roland.bennewitz@inm-gmbh.de
INM is focused on the research and development of materials – for today, tomorrow and the future. Chemists, physicists, biologists, materials and engineering scientists shape the work at INM. From molecule to pilot production, they follow the recurring questions: Which material properties are new, how can they be investigated and how can they be used in the future?

INM – Leibniz Institute for New Materials, situated in Saarbrücken/Germany, is an internationally leading centre for materials research. It is a scientific partner to national and international institutes and a provider of research and development for companies throughout the world. INM is an institute of the Scientific Association Gottfried Wilhelm Leibniz and employs around 190 collaborators. Its main research fields are Chemical Nanotechnology, Interface Materials, and Materials in Biology.

Dr. Carola Jung | idw
Further information:
http://www.inm-gmbh.de/
http://www.wgl.de/

More articles from Materials Sciences:

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016 | Materials Sciences

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>