Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold-plated crystals set new standard for natural gas detectors

07.04.2017

New metamaterials-based technology could replace infrared sensors used for gas leaks, agriculture and recycling

Materials scientists and engineers have developed a sensor that is fast, sensitive and efficient enough to detect specific wavelengths of electromagnetic energy while on the move. The technology could actively scan areas for methane or natural gas leaks, monitor the health of vast fields of crops or quickly sort plastics for recycling.


This is a layer-by-layer look at the new metamaterial infrared detector, with simulated views as to its temperature distribution (top right), electric field (bottom left), and how it absorbs power (bottom right).

Credit: Willie Padilla, Duke University

Working closely with the optoelectronic materials company SRICO, engineers from Duke University have built a prototype detector that beats the existing competition in size, weight, power, speed and, most importantly, cost.

The new technology relies on metamaterials -- engineered structures made of carefully designed repeating cells that can interact with electromagnetic waves in unnatural ways. By combining seemingly simple patterns of metal with extremely thin slices of perfect crystals, the engineers created a streamlined device able to detect invisible infrared signatures emitted by various kinds of gasses, plastics and other sources.

The results appeared on February 20, 2017, in the journal Optica.

"The benefit of using metamaterials is that different components required in a detector can be combined into one feature," said Willie Padilla, professor of electrical and computer engineering at Duke. "That simplification gains you a lot of efficiency."

In a typical thermal detector, infrared light waves are absorbed and converted into heat by a black substance, essentially soot. That heat is conducted to a separate component that creates an electrical signal that is then read out. This setup creates speed limitations, and only by overlaying filters or a complex system of moving mirrors, can specific wavelengths be singled out.

The new metamaterial sensor skirts both of these issues.

Each tiny section of the detector consists of a pattern of gold sitting on top of lithium niobate crystal. This crystal is pyroelectric, meaning that when it gets hot, it creates an electrical charge. Like shaving a piece of cheese off a block, engineers at SRICO use an ion beam to peel a slice of crystal just 600 nanometers thick. This technique eliminates potential defects in the crystalline structure, which reduces background noise. It also creates a thinner slice than other approaches, allowing the crystal to heat up more quickly.

Ordinarily, this crystal is so thin that light would simply travel through without being absorbed. However, researchers tailor the top layer of gold into a pattern that combines with the properties of the crystal to cause the pixel to absorb only a specific range of electromagnetic frequencies, removing the need for separate filters. When the crystal heats up and generates an electric charge, the gold then does double duty by carrying the signal to the detector's amplifier, eliminating the need for separate electrical leads.

"These designs allow this technology to be 10 to 100 times faster than existing detectors because the heat is created directly by the crystal" said Jon Suen, a postdoctoral associate in Padilla's laboratory. "This lets us create devices with fewer pixels and also presents the ability to sweep the detector across an area or capture images in motion."

"This is such a good marriage of technologies," said Vincent Stenger, an engineer at SRICO and coauthor of the paper. "Working with Duke has been one of the most ideal situations I've had with technology transfer. We can focus on making the material and they can focus on the device structure. Both sides have been contributing with a clear product in mind that we're now working on marketing."

The researchers can fabricate the device to detect any specific range of electromagnetic frequencies simply by redesigning the details of the gold pattern.

Stenger and his colleagues at SRICO have already created a single-pixel prototype as a proof of concept. They are currently working to find funding from industry investors or possibly a follow-on government grant.

The researchers are optimistic as their device has many advantages over existing technologies. Its fast detection time would allow it to quickly scan over an area while looking for methane or natural gas leaks. The simplicity of its design makes it lightweight enough to carry into fields to assess the health of agricultural crops.

"You could even make this into a low-cost lab instrument for spectroscopy for medical samples," said Padilla. "I'm not sure what the eventual price point would be, but it'd be a lot less than the $300,000 instrument we currently have in our laboratory."

###

This research was supported by the U.S. Army Research Laboratory (W311SR-14-C-0006).

Jonathan Y Suen, Kebin Fan, John Montoya, Christopher Bingham, Vincent Stenger, Sri Sriram, Willie J. Padilla. "Multifunctional metamaterial pyroelectric infrared detectors." Optica, 2017. DOI: 10.1364/OPTICA.4.000276

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>