Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold Nanoparticle Catalyst that Learns from Enzyme in Nature

16.11.2012
A team led by Dr. Kazushi Miki, Group Leader of the Functional Heterointerface Group, Polymer Materials Unit, National Institute for Materials Science succeeded in development of a high activity gold nanoparticle catalyst that simplify the function of enzyme in capturing substances.
A team led by Dr. Kazushi Miki, Group Leader of the Functional Heterointerface Group, Polymer Materials Unit (Unit Director: Izumi Ichinose), National Institute for Materials Science (President: Sukekatsu Ushioda) succeeded in development of a high activity gold nanoparticle catalyst that simplify the function of enzyme in capturing substances.

This new type of catalyst mimics enzyme, which supports biological activities as a catalyst in the reactions of the living body. Metalloenzymes has metal element which functions as a catalyst in the active center, and manifest extremely high activity and selectivity by possessing a function in which proteins surrounding the vicinity capture designated substances at activity sites. The NIMS group succeeded in realizing catalytic activity similar to that of metalloenzymes by simplifying the structure of these metalloenzymes in gold nanoparticles coated with alkanethiol molecules.

In this work, the NIMS research group focused on the fact that a self-assembled alkanethiol monolayer formed on the surface of gold nanoparticles (AuNP) possesses an interaction similar to that of cell membranes (lipid bilayer), which capture molecules of designated lengths and shapes. Because the molecules which are captured on the particle surface by this interaction increase the probability of contact with the gold particle surface, which has a catalytic function, the catalytic reaction is accelerated. Concretely, a high activity catalytic reaction was discovered, in which silane molecules are efficiently activated on the surface of gold, which is a catalyst, by capture of silane molecules and alcohol molecules on the surface of the gold particles.

As this result confirmed the mechanism of a catalytic reaction similar to that of metalloenzymes, it is expected to be possible to realize catalysts with a combination of high activity and high selectivity by designing modified molecules for AuNP. Furthermore, unlike natural enzyme, which can only be used stable in aqueous solutions, AuNP display extremely high chemical stability, enabling use under acidic and basic solution conditions and in organic solvents. Thus, there are no restrictions on industrial use.

This research was carried out as part of the research subject “Spatial and Temporal Integration of Near Field Reinforced Photochemical Reactions” (FY 2010-2012; Research Representative: Kazushi Miki) in the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Grants in Aid for Scientific Research on Innovative Areas research field “Organic Synthesis Based on Reaction Integration: Development of New Methods and Creation of New Substances” (Area Representative: Jun-ichi Yoshida, Professor, Kyoto University Graduate School of Engineering;

Fig : Schematic diagram of the new catalyst (a) The new catalyst has a structure in which gold nanoparticles (AuNP) having a size of 10nm (1/100 millionth of 1m) coated with alkanethiol are regularly arranged on a flat substrate. (b) In this scanning electron microscope image, it can be understood that the actual size of the AuNP is 9.0nm, and the gap between the AuNP is 2.4nm.

http://www.sbchem.kyoto-u.ac.jp/syuuseki/index ).

A patent application has already been filed in connection with this research.

These results will soon be published in the journal of Advanced Materials (Wiley).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

nachricht Electrode materials from the microwave oven
19.10.2017 | Technical University of Munich (TUM)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>