Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold Nanoparticle Catalyst that Learns from Enzyme in Nature

16.11.2012
A team led by Dr. Kazushi Miki, Group Leader of the Functional Heterointerface Group, Polymer Materials Unit, National Institute for Materials Science succeeded in development of a high activity gold nanoparticle catalyst that simplify the function of enzyme in capturing substances.
A team led by Dr. Kazushi Miki, Group Leader of the Functional Heterointerface Group, Polymer Materials Unit (Unit Director: Izumi Ichinose), National Institute for Materials Science (President: Sukekatsu Ushioda) succeeded in development of a high activity gold nanoparticle catalyst that simplify the function of enzyme in capturing substances.

This new type of catalyst mimics enzyme, which supports biological activities as a catalyst in the reactions of the living body. Metalloenzymes has metal element which functions as a catalyst in the active center, and manifest extremely high activity and selectivity by possessing a function in which proteins surrounding the vicinity capture designated substances at activity sites. The NIMS group succeeded in realizing catalytic activity similar to that of metalloenzymes by simplifying the structure of these metalloenzymes in gold nanoparticles coated with alkanethiol molecules.

In this work, the NIMS research group focused on the fact that a self-assembled alkanethiol monolayer formed on the surface of gold nanoparticles (AuNP) possesses an interaction similar to that of cell membranes (lipid bilayer), which capture molecules of designated lengths and shapes. Because the molecules which are captured on the particle surface by this interaction increase the probability of contact with the gold particle surface, which has a catalytic function, the catalytic reaction is accelerated. Concretely, a high activity catalytic reaction was discovered, in which silane molecules are efficiently activated on the surface of gold, which is a catalyst, by capture of silane molecules and alcohol molecules on the surface of the gold particles.

As this result confirmed the mechanism of a catalytic reaction similar to that of metalloenzymes, it is expected to be possible to realize catalysts with a combination of high activity and high selectivity by designing modified molecules for AuNP. Furthermore, unlike natural enzyme, which can only be used stable in aqueous solutions, AuNP display extremely high chemical stability, enabling use under acidic and basic solution conditions and in organic solvents. Thus, there are no restrictions on industrial use.

This research was carried out as part of the research subject “Spatial and Temporal Integration of Near Field Reinforced Photochemical Reactions” (FY 2010-2012; Research Representative: Kazushi Miki) in the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Grants in Aid for Scientific Research on Innovative Areas research field “Organic Synthesis Based on Reaction Integration: Development of New Methods and Creation of New Substances” (Area Representative: Jun-ichi Yoshida, Professor, Kyoto University Graduate School of Engineering;

Fig : Schematic diagram of the new catalyst (a) The new catalyst has a structure in which gold nanoparticles (AuNP) having a size of 10nm (1/100 millionth of 1m) coated with alkanethiol are regularly arranged on a flat substrate. (b) In this scanning electron microscope image, it can be understood that the actual size of the AuNP is 9.0nm, and the gap between the AuNP is 2.4nm.

http://www.sbchem.kyoto-u.ac.jp/syuuseki/index ).

A patent application has already been filed in connection with this research.

These results will soon be published in the journal of Advanced Materials (Wiley).

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp/eng/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>