Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Glasses strong as steel: A fast way to find the best


Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Using traditional methods, it usually takes a full day to identify a single metal alloy appropriate for making BMGs. The new method allows researchers to screen about 3,000 alloys per day and simultaneously ascertain certain properties, such as melting temperature and malleability.

"Instead of fishing with a single hook, we're throwing a big net," said Jan Schroers, senior author of the research, which was published online April 13 in the journal Nature Materials. "This should dramatically hasten the discovery of BMGs and new uses for them."

BMGs are metal alloys composed typically of three or more elements, such as magnesium, copper, and yttrium (Mg-Cu-Y). Certain combinations of elements, when heated and cooled to specific temperatures at specific rates, result in materials with unusual plasticity and strength. They can be used for producing hard, durable, and seamless complex shapes that no other metal processing method can.

Already used in watch components, golf clubs, and other sporting goods, BMGs also have likely applications in biomedical technology, such as implants and stents, mobile phones, and other consumer electronics, said Schroers, who is professor of mechanical engineering and materials science at the Yale School of Engineering & Applied Science.

He said there are an estimated 20 million possible BMG alloys. About 120,000 metallic glasses have been produced and characterized to date.

Using standard methods, it would take about 4,000 years to process all possible combinations, Schroers has calculated. The new method could reduce the time to about four years.

The technique combines a process called parallel blow forming with combinatorial sputtering. Blow forming generates bubble gum-like bubbles from the alloys and indicates their pliability. Co-sputtering is used for fabricating thousands of alloys simultaneously; alloy elements are mixed at various controlled ratios, yielding thousands of millimeter size and micron thick samples.

"Instead of blowing one bubble on one material, we blow-form 3,000 bubbles on 3,000 different materials," Schroers said.

Since 2010, he and his research team have tested about 50,000 alloys using the new method and identified three specific new BMG alloys. They are focused on 10 alloy families.

Ideal BMGs offer plasticity during the manufacturing process, durability, and biocompatibility, along with affordability, Schroers said. Some constituent elements can be costly.


The paper is titled "Combinatorial development of bulk metallic glasses."

Shiyan Ding is lead author. Co-authors Yanhui Liu, Yanglin Li, Ze Liu, Sungwoo Sohn, and Fred J. Walker, all of Yale.

The National Science Foundation and the U.S. Department of Energy provided support for the research.

Eric Gershon | Eurek Alert!
Further information:

Further reports about: BMG Energy bubbles copper gum-like bubbles implants manufacturing process method plasticity specific temperature

More articles from Materials Sciences:

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>