Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant Optical Gain in a Rare-Earth-Ion-Doped Microstructure

09.01.2012
Prof. Markus Pollnau and co-workers at the MESA+ Institute for Nanotechnology at the University of Twente have developed a rare-earth-ion-doped optical amplifier with performance comparable to semiconductor amplifiers.
Signal amplification
Amplification of optical signals is critical in photonics applications. Semiconductor optical waveguide amplifiers have high gain per unit length (~1000 dB/cm), but suffer from spatial and temporal gain pattering effects.

In comparison, fiber amplifiers doped with trivalent rare-earth ions like Er3+ combine good overall gain with low noise and negligible non-linearities. However, this comes at the cost of having to use several meters of fiber length, making them unsuitable for on-chip applications.

By engineering the host material, dopant concentration, and geometry the MESA+ scientists were able to increase the modal gain per unit length of rare-earth-ion-doped waveguide amplifiers to ~1000 dB/cm.

As good as semiconductor amplifiers
“Our highest measured gain of 935 dB/cm is two orders of magnitude higher than previously demonstrated in any rare-earth-ion-doped amplifier and similar to the best results reported for semiconductor amplifiers,” says Dimitri Geskus, lead author on the paper.

The approach uses the family of monoclinic potassium double tungstates KY(WO4)2, KGd(WO4)2, and KLu(WO4)2. Yb3+ ions doped into these materials possess some of the highest transition cross-sections observed in dielectric materials.

Besides their applicability as on-chip amplifiers for high-bit-rate data transmission at signal wavelengths around 1 ìm, these new rare-earth-ion-doped amplifiers may be used to provide optical gain in nanophotonic devices, such as nanoamplifiers and nanolasers, and may enable lossless propagation in plasmonic nanostructures.

The research is reported in the first issue of Advanced Optical Materials, a new section in Advanced Materials (2010 IF: 10.880) dedicated to exploring light-matter interactions.

For more information on Advanced Optical Materials, visit www.advopticalmat.de.

The article is available at http://doi.wiley.com/10.1002/adma.201101781.

If you need further information or are interested in the pdf of the article please contact me at cteutsch@wiley-vch.de

Carmen Teutsch | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>