Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant flakes make graphene oxide gel

21.10.2011
Rice, Colorado discovery could boost metamaterials, high-strength fibers

Giant flakes of graphene oxide in water aggregate like a stack of pancakes, but infinitely thinner, and in the process gain characteristics that materials scientists may find delicious.


A single flake of graphene oxide roughly 40 microns wide, seen under an electron microscope, sits atop a copper support. Such "giant" flakes form into a gel-like liquid crystal in solution. Credit: Rice University/University of Colorado at Boulder

A new paper by scientists at Rice University and the University of Colorado details how slices of graphene, the single-atom form of carbon, in a solution arrange themselves to form a nematic liquid crystal in which particles are free-floating but aligned.

That much was already known. The new twist is that if the flakes – in this case, graphene oxide – are big enough and concentrated enough, they retain their alignment as they form a gel. That gel is a handy precursor for manufacturing metamaterials or fibers with unique mechanical and electronic properties.

The team reported its discovery online this week in the Royal Society of Chemistry journal Soft Matter. Rice authors include Matteo Pasquali, a professor of chemical and biomolecular engineering and of chemistry; James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science; postdoctoral research associate Dmitry Kosynkin; and graduate students Budhadipta Dan and Natnael Behabtu. Ivan Smalyukh, an assistant professor of physics at the University of Colorado at Boulder, led research for his group, in which Dan served as a visiting scientist.

"Graphene materials and fluid phases are a great research area," Pasquali said. "From the fundamental point of view, fluid phases comprising flakes are relatively unexplored, and certainly so when the flakes have important electronic properties.

"From the application standpoint, graphene and graphene oxide can be important building blocks in such areas as flexible electronics and conductive and high-strength materials, and can serve as templates for ordering plasmonic structures," he said.

By "giant," the researchers referred to irregular flakes of graphene oxide up to 10,000 times as wide as they are high. (That's still impossibly small: on average, roughly 12 microns wide and less than a nanometer high.) Previous studies showed smaller bits of pristine graphene suspended in acid would form a liquid crystal and that graphene oxide would do likewise in other solutions, including water.

This time the team discovered that if the flakes are big enough and concentrated enough, the solution becomes semisolid. When they constrained the gel to a thin pipette and evaporated some of the water, the graphene oxide flakes got closer to each other and stacked up spontaneously, although imperfectly.

"The exciting part for me is the spontaneous ordering of graphene oxide into a liquid crystal, which nobody had observed before," said Behabtu, a member of Pasquali's lab. "It's still a liquid, but it's ordered. That's useful to make fibers, but it could also induce order on other particles like nanorods."

He said it would be a simple matter to heat the concentrated gel and extrude it into something like carbon fiber, with enhanced properties provided by "mix-ins."

Testing the possibilities, the researchers mixed gold microtriangles and glass microrods into the solution, and found both were effectively forced to line up with the pancaking flakes. Their inclusion also helped the team get visual confirmation of the flakes' orientation.

The process offers the possibility of the large-scale ordering and alignment of such plasmonic particles as gold, silver and palladium nanorods, important components in optoelectronic devices and metamaterials, they reported.

Behabtu added that heating the gel "crosslinks the flakes, and that's good for mechanical strength. You can even heat graphene oxide enough to reduce it, stripping out the oxygen and turning it back into graphite."

Co-authors of the paper are Angel Martinez and Julian Evans, graduate students of Smalyukh at the University of Colorado at Boulder.

The Institute for Complex Adaptive Matter, the Colorado Renewable and Sustainable Energy Initiative, the National Science Foundation, the Air Force Research Lab, the Air Force Office of Scientific Research, the Welch Foundation, the U.S. Army Corps of Engineers Environmental Quality and Installation Program and M-I Swaco supported the research.

Mike Williams | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>