Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

German Academic Exchange Service funds international project on spintronics

08.02.2013
Up to EUR 1 million for cooperation with international partners for research into energy-efficient information technology

The German Academic Exchange Service (DAAD) is sponsoring a joint project involving Johannes Gutenberg University Mainz (JGU) in Mainz, Tohoku University in Japan, Stanford University, and IBM Research. The project will be focusing on the field of spintronics, a key technology that enables the creation of new energy-efficient IT devices.

At Mainz researchers from JGU's Institute of Physics and the Institute of Inorganic Chemistry and Analytical Chemistry participate with many of the activities taking place under the Materials Science in Mainz (MAINZ) Graduate School of Excellence. Over the next four years, the SpinNet network will be funded with about EUR 1 million from the German Federal Ministry of Education and Research (BMBF). SpinNet is one of the 21 projects that the German Academic Exchange Service approved from the total of 120 proposals submitted in the first round and from the 40 entries that made it to the second round.

Under the aegis of the MAINZ Graduate School, Johannes Gutenberg University Mainz had submitted a proposal for financial support as a so-called "Thematic Network". With this program, the German Academic Exchange Service aims to provide support to research-based multilateral and international networks with leading partners from abroad. The inclusion of non-university research facilities, such as IBM Research, was encouraged and the program is intended to help create attractive conditions that will help attract excellent international young researchers from partner universities to Germany. Another purpose is to enable the participating German universities to work at the cutting edge of international research by creating centers of competence. The MAINZ Graduate School has been closely cooperating with the partners for years and SpinNet will help to further this cooperation and fund complementary activities.

SpinNet will concentrate on the development of energy-saving information technology using the potential provided by spintronics. The current semiconductor-based systems will reach their limits in the foreseeable future, meaning that innovative technologies need to be developed if components are to be miniaturized further and energy consumption is reduced. In this context, spintronics is a highly promising approach. While conventional electronic systems in IT components employ only the charge of electrons, spintronics also involves the intrinsic angular momentum or spin of electrons for information processing. Using this technology, it should be possible to develop non-volatile storage and logic systems and these would then reduce energy consumption while also radically simplifying systems architecture. The new research network will be officially launched on April 1, 2013; with the inaugural meeting of the partners taking place at the Newspin3 Conference that is to be held on April 2–4, 2013 in Mainz.

Funding for the MAINZ Graduate School was approved in the 2007 German Excellence Initiative. In the second round in 2012, MAINZ was awarded further funding for another five years – a major success for the materials scientists in Mainz and a significant boost for the education of young researchers at Johannes Gutenberg University Mainz. The Graduate School of Excellence combines work groups from JGU, the University of Kaiserslautern, and the Max Planck Institute for Polymer Research in Mainz. One of its core research fields is spintronics. Cooperation in this sector with leading international partners plays an important role. The Graduate School provides outstanding national and international doctoral candidates in the natural sciences with excellent training in materials science.

Further information:
Dr. Mark Bajohrs
Graduate School of Excellence "Materials Science in Mainz"
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-26982
fax +49 6131 39-26983
e-mail: mainz@uni-mainz.de
http://www.mainz.uni-mainz.de/

Professor Dr. Mathias Kläui
Institute of Physics and Graduate School of Excellence "Materials Science in Mainz"
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-23633
fax +49 6131 39-24076
e-mail: mainz@uni-mainz.de
http://www.klaeui-lab.de/

Petra Giegerich | idw
Further information:
http://www.mainz.uni-mainz.de/
http://www.youtube.com/watch?v=edJMFWSRfck

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>