Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Georgia Tech Awarded New Center to Study Potential Silicon Successor

15.10.2008
The National Science Foundation (NSF) has awarded funding to the Georgia Institute of Technology to create a new Materials Research Science and Engineering Center (MRSEC) - The Georgia Tech Laboratory for New Electronic Materials.

The Laboratory will focus its efforts on the development of new materials to serve as the successors to silicon in the semiconductor industry. Specifically, the development of graphene – which holds tremendous promise as an electronic material – will be the initial core of research and development at the Center.

NSF funding will be $8.1 million for six years of research and development. The MRSEC office suite will be housed in the Georgia Tech’s new Marcus Nanotechnology Research Center Building.

“This is an exciting time for graphene research,” said Dennis Hess, director of the Georgia Tech MRSEC. “Our studies may allow the manufacture of microelectronic devices and integrated circuits based on graphene. The Georgia Tech team, in conjunction with external partners, has already pioneered the use of epitaxial graphene to achieve such goals. Georgia Tech Physics Professors Walt de Heer, Phil First and Ed Conrad are worldwide leaders in the growth and characterization of epitaxial graphene. We look forward to additional innovative discoveries from our Center over the next few years.”

The Laboratory will be a cross-disciplinary effort utilizing the talent and resources of Georgia Tech and four additional institutions: University of California Berkeley, University of California Riverside, Alabama A & M and the University of Michigan. Georgia Tech will initially have 13 faculty members involved in the Laboratory’s efforts, with five additional members representing the partner schools. Collaborations are already in place with several companies and national laboratories within the U.S. and abroad.

Graphene, a sheet of carbon only one-atom thick, holds the potential to become the core material for computer processors in electronics, which continue to become smaller in size. Silicon, comparatively, has fundamental limitations that inhibit operation in ever-shrinking devices used in microelectronics, optics and sensors.

Georgia Tech will develop the fundamental science and technology to maximize graphene’s potential as a component in future electronics technologies. In addition, the Center will provide the core curriculum, train a diverse workforce and develop the future academic and industrial leaders needed for this new direction in the semiconductor industry.

An industrial advisory board is being assembled for the Center, which will include representatives from leading electronics companies.

"This new MRSEC complements Georgia Tech's multiple programs and investments in nanotechnology extremely well," said Professor Mark Allen, senior vice provost for Research and Innovation. "Much of the work will take place in our Nanotechnology Research Center, a new facility dedicated to research into both inorganic and organic nanoscience and nanotechnology. We look forward to enabling the next generation of graphene electronics through the efforts of the researchers in this new MRSEC."

Don Fernandez | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>