Georgia Tech Awarded New Center to Study Potential Silicon Successor

The Laboratory will focus its efforts on the development of new materials to serve as the successors to silicon in the semiconductor industry. Specifically, the development of graphene – which holds tremendous promise as an electronic material – will be the initial core of research and development at the Center.

NSF funding will be $8.1 million for six years of research and development. The MRSEC office suite will be housed in the Georgia Tech’s new Marcus Nanotechnology Research Center Building.

“This is an exciting time for graphene research,” said Dennis Hess, director of the Georgia Tech MRSEC. “Our studies may allow the manufacture of microelectronic devices and integrated circuits based on graphene. The Georgia Tech team, in conjunction with external partners, has already pioneered the use of epitaxial graphene to achieve such goals. Georgia Tech Physics Professors Walt de Heer, Phil First and Ed Conrad are worldwide leaders in the growth and characterization of epitaxial graphene. We look forward to additional innovative discoveries from our Center over the next few years.”

The Laboratory will be a cross-disciplinary effort utilizing the talent and resources of Georgia Tech and four additional institutions: University of California Berkeley, University of California Riverside, Alabama A & M and the University of Michigan. Georgia Tech will initially have 13 faculty members involved in the Laboratory’s efforts, with five additional members representing the partner schools. Collaborations are already in place with several companies and national laboratories within the U.S. and abroad.

Graphene, a sheet of carbon only one-atom thick, holds the potential to become the core material for computer processors in electronics, which continue to become smaller in size. Silicon, comparatively, has fundamental limitations that inhibit operation in ever-shrinking devices used in microelectronics, optics and sensors.

Georgia Tech will develop the fundamental science and technology to maximize graphene’s potential as a component in future electronics technologies. In addition, the Center will provide the core curriculum, train a diverse workforce and develop the future academic and industrial leaders needed for this new direction in the semiconductor industry.

An industrial advisory board is being assembled for the Center, which will include representatives from leading electronics companies.

“This new MRSEC complements Georgia Tech's multiple programs and investments in nanotechnology extremely well,” said Professor Mark Allen, senior vice provost for Research and Innovation. “Much of the work will take place in our Nanotechnology Research Center, a new facility dedicated to research into both inorganic and organic nanoscience and nanotechnology. We look forward to enabling the next generation of graphene electronics through the efforts of the researchers in this new MRSEC.”

Media Contact

Don Fernandez Newswise Science News

More Information:

http://www.gatech.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors