Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using genetic algorithms to discover new nanostructured materials

29.10.2013
Researchers at Columbia Engineering, led by Chemical Engineering Professors Venkat Venkatasubramanian and Sanat Kumar, have developed a new approach to designing novel nanostructured materials through an inverse design framework using genetic algorithms.

The study, published in the October 28 Early Online edition of Proceedings of the National Academy of Sciences (PNAS), is the first to demonstrate the application of this methodology to the design of self-assembled nanostructures, and shows the potential of machine learning and "big data" approaches embodied in the new Institute for Data Sciences and Engineering at Columbia.


This is a phase diagram showing the cluster formations predicted by GA and their validation (squares).

Credit: Columbia Engineering

"Our framework can help speed up the materials discovery process," says Venkatasubramanian, Samuel Ruben-Peter G. Viele Professor of Engineering, and co-author of the paper. "In a sense, we are leveraging how nature discovers new materials—the Darwinian model of evolution—by suitably marrying it with computational methods. It's Darwin on steroids!"

Using a genetic algorithm they developed, the researchers designed DNA-grafted particles that self-assembled into the crystalline structures they wanted. Theirs was an "inverse" way of doing research. In conventional research, colloidal particles grafted with single-stranded DNA are allowed to self-assemble, and then the resulting crystal structures are examined.

"Although this Edisonian approach is useful for a posteriori understanding of the factors that govern assembly," notes Kumar, Chemical Engineering Department Chair and the study's co-author, "it doesn't allow us to a priori design these materials into desired structures. Our study addresses this design issue and presents an evolutionary optimization approach that was not only able to reproduce the original phase diagram detailing regions of known crystals, but also to elucidate previously unobserved structures."

The researchers are using "big data" concepts and techniques to discover and design new nanomaterials—a priority area under the White House's Materials Genome Initiative—using a methodology that will revolutionize materials design, impacting a broad range of products that affect our daily lives, from drugs and agricultural chemicals such as pesticides or herbicides to fuel additives, paints and varnishes, and even personal care products such as shampoo.

"This inverse design approach demonstrates the potential of machine learning and algorithm engineering approaches to challenging problems in materials science," says Kathleen McKeown, director of the Institute for Data Sciences and Engineering and Henry and Gertrude Rothschild Professor of Computer Science. "At the Institute, we are focused on pioneering such advances in a number problems of great practical importance in engineering."

Venkatasubramanian adds, "Discovering and designing new advanced materials and formulations with desired properties is an important and challenging problem, encompassing a wide variety of products in industries addressing clean energy, national security, and human welfare." He points out that the traditional Edisonian trial-and-error discovery approach is time-consuming and costly—it can cause major delays in time-to-market as well as miss potential solutions. And the ever-increasing amount of high-throughput experimentation data, while a major modeling and informatics challenge, has also created opportunities for material design and discovery.

The researchers built upon their earlier work to develop what they call an evolutionary framework for the automated discovery of new materials. Venkatasubramanian proposed the design framework and analyzed the results, and Kumar developed the framework in the context of self-assembled nanomaterials. Babji Srinivasan, a postdoc with Venkatasubramanian and Kumar and now an assistant professor at IIT Gandhinagar, and Thi Vo, a PhD candidate at Columbia Engineering, carried out the computational research. The team collaborated with Oleg Gang and Yugang Zhang of Brookhaven National Laboratory, who carried out the supporting experiments.

The team plans to continue exploring the design space of potential ssDNA-grafted colloidal nanostructures, improving its forward models, and bring in more advanced machine learning techniques. "We need a new paradigm that increases the idea flow, broadens the search horizon, and archives the knowledge from today's successes to accelerate those of tomorrow," says Venkatasubramanian.

This research has been funded by a $1.4 million three-year grant from the U.S. Department of Energy.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of modern society's more difficult challenges. http://www.engineering.columbia.edu/

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>