Generation of Spin Current by Acoustic Wave Spin Pumping

This success was achieved under the support of JST and by the collaboration among Tohoku University, JAEA, and Technische Universitaet Kaiserslautern in Germany. Details are published in Nature Materials.

Heat generation associated with electronic charge current will be problematic in future high-density electronics. Spin angular momentum, another entity of electron, is expected to carry information without heat generation. In contrast to existing methods of injecting spin current, such as electromagnetic waves, researchers have shown that acoustic waves, or phonons, can inject spin current by using a Ni81Fe19/Pt bilayer wire on an insulating sapphire plate.

Under a temperature gradient in the sapphire, the voltage generated in the Pt layer was shown to reflect the wire position, although the wire was insulated both electrically and magnetically. This non-local voltage is attributed to the coupling of spins and phonons generated by the temperature gradient, since phonons are the only possible carrier of information.

This is a demonstration of generating spin current by directly injecting acoustic waves to realize spin pumping. Researchers suggest that this finding will open the door to acoustic spintronics, in which acoustic waves are exploited for making spin-based devices.

Reference:

K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa, and E. Saitoh, “Long-range spin Seebeck effect and acoustic spin pumping”, Nature Materials (2011) doi:10.1038/nmat3099

Media Contact

Mikiko Tanifuji Research asia research news

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors