Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gelatine instead of forearm

19.04.2017

The characteristics of human skin are heavily dependent on the hydration of the tissue - in simple terms, the water content. This also changes its interaction with textiles. Up to now, it has only been possible to determine the interaction between human skin and textiles by means of clinical trials on human subjects. Now, EMPA researchers have developed an artificial gelatine-based skin model that simulates human skin almost perfectly.

The moisture content of the human skin influences its characteristics. The addition of moisture softens the skin and changes its appearance. This can be seen in DIY work for example: a thin film of perspiration helps to provide better grip when using a hammer or screwdriver; however, excessive perspiration can make the tools slip.


The EMPA skin model: gelatine on a cotton substrate

Empa

The moisture causes the upper layer of the skin (the Stratum corneum) to swell. It becomes softer and smoother and this provides a larger contact area that increases friction. However, too high friction can have a negative effect. The result: blisters on your feet or hands, irritation or rashes. Particularly in connection with textiles that cover our skin, such reactions are frequent and, accordingly, undesirable.

In order to test the interaction between skin and textiles, volunteers have been involved and asked to rub their skin against the material to be investigated It was then possible to determine how the skin reacted to it. This can be costly and laborious, sometimes painful and not without a certain degree of risk for the volunteers.

Textiles also react differently to the moistness of the skin surface. Slight perspiration when walking, heavy perspiration with endurance sports or running home during a summer downpour: everything has an effect.

Pre-tests using the model instead of on humans

In future, it will no longer be necessary for volunteers to rub against a t-shirt. The EMPA researcher Agnieszka Dabrowska has developed a skin model that can simulate exactly the characteristics of human skin and can reproduce its frictional behaviour against textiles in dry and hydrated conditions.

It will in future be possible to use the model to assist in the development of textiles, as well as other materials that may come into direct contact with human skin. Under these conditions, the model changes its characteristics in exactly the same way as genuine human skin and can thus provide initial insights without exposing humans to the risk of injury or harm.

The surface of the skin model also changes in exactly the same way as genuine skin: it swells when it comes into contact with water and thus becomes smoother and softer. Of course, it is still necessary to "put it to the test" with genuine skin in the subsequent development of the textile, but unsuitable textiles can first be rejected at an early stage conveniently, in a risk-free manner and without great expenditure and effort.

The gummy bear makes it happen

The basis of the model is standard gelatine, which Agnieszka Dabrowska embeds on a layer of cotton. However, normal gelatine dissolves in contact with water. To prevent this, Dabrowska adds the crosslinking process in which the polymer chains are connected through a chemical reaction. This holds the molecules together and prevents the final skin model from dissolving.

"Initially I wanted to work with keratin", says Dabrowska. Keratin is a water-insoluble fibrous protein in the skin. But the product is extremely expensive. "Gelatine has similar characteristics to keratin, but is much cheaper", says Dabrowska. "There are also researchers that have carried out preliminary experiments with gummy bears for example". They also swell when they come into contact with water – exactly like human skin. The model made from gelatine costs only a few Swiss francs, compared with a model made out of keratin, which can quickly run into a few thousand francs.

EMPA researcher Dabrowska goes one step further however: the model currently depends on external source of water, but this is soon set to change. Her team would like to get the artificial skin to perspire from a few pores in order to bring reality another step nearer.

Weitere Informationen:

http://www.empa.ch/web/s604/skin-model

Empa Kommunikation | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Further reports about: Empa artificial skin fibrous protein human skin polymer chains skin textiles thin film

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>