Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Futuristic Copper Foam Batteries Get More Bang for the Buck

25.10.2013
Scientists report steps toward safer, cheaper, longer-lasting, and faster-charging solid-state battery at the AVS Meeting in Long Beach, Calif.

People use their GPS apps, cameras, and mobile internet to navigate strange cities in search of good coffee, record "selfie" commentary while they wait in line, and upload their videos directly to social media sites while they sip their latte. But no amount of high-tech savvy can save a well-loved device from dying when its battery is drained.

Smartphones suffer from the same basic ailment that plagues solar power plants and wind farms – they lack cheap, reliable, long-life batteries to store large amounts of energy for when the sun goes down, the wind stops blowing, or the device is unplugged for a long time.

“I think almost any application in technology you can think of is currently limited by the battery,” said Amy Prieto, a chemist at Colorado State University who leads a start-up company with the goal of developing a better energy storage device. The group is nearing the prototype phase for a lithium ion battery that should be safer, cheaper, faster-charging, and more environmentally friendly than conventional batteries now on the market. She will present her latest results at the upcoming AVS 60th International Symposium and Exhibition, held Oct. 27 – Nov. 1 in Long Beach, Calif.

Batteries today have a number of unsolved problems, including high cost, heat output, limited lifespans, and the toxic or corrosive materials used in their manufacture. But two main issues limit the functionality of modern batteries, Prieto said: low energy density and low power density.

Low energy density means that a conventional smartphone battery can’t hold enough energy in a small enough volume to power the phone for much longer than one or two days, while low power density means the battery will take hours to recharge, instead of minutes.

Prieto’s group has tackled many of these challenges by making of list of desired properties for each of the main battery components. The team then developed one component at a time – starting with a copper foam structure the team purchased to serve as the current collector on the anode side of the battery.

“Foam is relatively easy to manufacture,” says Prieto. It also has a 3D structure that increases the surface area of the electrodes and brings them closer together, which in turn increases the power density of the battery. In terms of energy density, the foam should also get more bang for the buck. The intricate 3D structures utilize the electrode material more efficiently than a flat surface.

On top of the copper foam, the researchers electroplate the anode, made from a material called copper antimonide. In a kind of bootstrap battery building, the anode then serves as an electrode for an electrochemical polymerization reaction that deposits the battery’s solid electrolyte. Finally, the team fills the space within the foam with a slurry that is dried to form the cathode. An aluminum mesh structure collects the current on the cathode side.

The electroplating equipment the team uses is inexpensive compared to the equipment needed to make other types of batteries. Prieto estimates the cost to manufacture the copper foam batteries will be about half that of conventional lithium ion batteries made in China. The team also calculates that the foam battery should store the same amount of energy as conventional batteries in two-thirds the volume, charge five to ten times faster, and last up to ten times longer.

The research team’s new battery also promises a number of safety and environmental benefits. The solid electrolyte the team chose reduces the risk of fire posed by conventional liquid electrolytes. In addition, the team relied only on water-based, non-toxic chemistry to manufacture the battery. “This was my personal dream,” says Prieto. “I didn’t think it would actually work, but it now looks like it will.”

Throughout the design process the team had to develop new ways to make known materials, such as the copper antimonide anode, and make entirely new materials, such as the polymer electrolyte. The team has tested each individual component and has successfully built a full 2D battery on a copper plate. The researchers are now in the process of integrating all the components in 3D.

Electric bikes and portable electronics are the first test applications the team plans for their foam battery. “We are less than one year from our first prototype, after which we’ll have third party testing,” says Prieto. “We’re aiming for low volume, early market beta testing shortly after that.”

Presentation MS+AS+EM+EN+NS+TF-MoM8, “Manufacturing a Three-dimensional,
Solid-state Rechargeable Battery,” is at 10:40 a.m. Pacific Time on Monday, Oct. 28, 2013.

MORE INFORMATION ABOUT THE AVS 60th INTERNATIONAL SYMPOSIUM & EXHIBITION

The Long Beach Convention Center is located at 300 E. Ocean Blvd., Long Beach, CA 90802.

USEFUL LINKS
Main meeting website: http://www2.avs.org/symposium/AVS60/pages/info.html
Technical Program: http://www.avssymposium.org/
PRESSROOM
The AVS Pressroom will be located in the Long Beach Convention Center. Pressroom hours are Monday-Thursday, 8:00 a.m. - 5:00 p.m. Your press badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The press badge will also admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday Evening and the Awards Ceremony and Reception on Wednesday night.

This news release was prepared for AVS by the American Institute of Physics (AIP).

ABOUT AVS
Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

Catherine Meyers | Newswise
Further information:
http://www.aip.org

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>