Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Futuristic Copper Foam Batteries Get More Bang for the Buck

Scientists report steps toward safer, cheaper, longer-lasting, and faster-charging solid-state battery at the AVS Meeting in Long Beach, Calif.

People use their GPS apps, cameras, and mobile internet to navigate strange cities in search of good coffee, record "selfie" commentary while they wait in line, and upload their videos directly to social media sites while they sip their latte. But no amount of high-tech savvy can save a well-loved device from dying when its battery is drained.

Smartphones suffer from the same basic ailment that plagues solar power plants and wind farms – they lack cheap, reliable, long-life batteries to store large amounts of energy for when the sun goes down, the wind stops blowing, or the device is unplugged for a long time.

“I think almost any application in technology you can think of is currently limited by the battery,” said Amy Prieto, a chemist at Colorado State University who leads a start-up company with the goal of developing a better energy storage device. The group is nearing the prototype phase for a lithium ion battery that should be safer, cheaper, faster-charging, and more environmentally friendly than conventional batteries now on the market. She will present her latest results at the upcoming AVS 60th International Symposium and Exhibition, held Oct. 27 – Nov. 1 in Long Beach, Calif.

Batteries today have a number of unsolved problems, including high cost, heat output, limited lifespans, and the toxic or corrosive materials used in their manufacture. But two main issues limit the functionality of modern batteries, Prieto said: low energy density and low power density.

Low energy density means that a conventional smartphone battery can’t hold enough energy in a small enough volume to power the phone for much longer than one or two days, while low power density means the battery will take hours to recharge, instead of minutes.

Prieto’s group has tackled many of these challenges by making of list of desired properties for each of the main battery components. The team then developed one component at a time – starting with a copper foam structure the team purchased to serve as the current collector on the anode side of the battery.

“Foam is relatively easy to manufacture,” says Prieto. It also has a 3D structure that increases the surface area of the electrodes and brings them closer together, which in turn increases the power density of the battery. In terms of energy density, the foam should also get more bang for the buck. The intricate 3D structures utilize the electrode material more efficiently than a flat surface.

On top of the copper foam, the researchers electroplate the anode, made from a material called copper antimonide. In a kind of bootstrap battery building, the anode then serves as an electrode for an electrochemical polymerization reaction that deposits the battery’s solid electrolyte. Finally, the team fills the space within the foam with a slurry that is dried to form the cathode. An aluminum mesh structure collects the current on the cathode side.

The electroplating equipment the team uses is inexpensive compared to the equipment needed to make other types of batteries. Prieto estimates the cost to manufacture the copper foam batteries will be about half that of conventional lithium ion batteries made in China. The team also calculates that the foam battery should store the same amount of energy as conventional batteries in two-thirds the volume, charge five to ten times faster, and last up to ten times longer.

The research team’s new battery also promises a number of safety and environmental benefits. The solid electrolyte the team chose reduces the risk of fire posed by conventional liquid electrolytes. In addition, the team relied only on water-based, non-toxic chemistry to manufacture the battery. “This was my personal dream,” says Prieto. “I didn’t think it would actually work, but it now looks like it will.”

Throughout the design process the team had to develop new ways to make known materials, such as the copper antimonide anode, and make entirely new materials, such as the polymer electrolyte. The team has tested each individual component and has successfully built a full 2D battery on a copper plate. The researchers are now in the process of integrating all the components in 3D.

Electric bikes and portable electronics are the first test applications the team plans for their foam battery. “We are less than one year from our first prototype, after which we’ll have third party testing,” says Prieto. “We’re aiming for low volume, early market beta testing shortly after that.”

Presentation MS+AS+EM+EN+NS+TF-MoM8, “Manufacturing a Three-dimensional,
Solid-state Rechargeable Battery,” is at 10:40 a.m. Pacific Time on Monday, Oct. 28, 2013.


The Long Beach Convention Center is located at 300 E. Ocean Blvd., Long Beach, CA 90802.

Main meeting website:
Technical Program:
The AVS Pressroom will be located in the Long Beach Convention Center. Pressroom hours are Monday-Thursday, 8:00 a.m. - 5:00 p.m. Your press badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The press badge will also admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday Evening and the Awards Ceremony and Reception on Wednesday night.

This news release was prepared for AVS by the American Institute of Physics (AIP).

Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

Catherine Meyers | Newswise
Further information:

More articles from Materials Sciences:

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>