Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future solar panels

03.09.2014

IK4-Ikerlan and the UPV/EHU-University of the Basque Country are exploring the limits of organic solar cells and how to manufacture more efficient cells

Conventional photovoltaic technology uses large, heavy, opaque, dark silicon panels, but this could soon change. The IK4-Ikerlan research centre is working within the X10D European project with new materials to produce solar panels in order to come up with alternatives to the current panels. What is needed to improve the functioning of cells with a large surface are materials that cost less to produce and offer greater energy efficiency.


Module -to which two cells have been connected in series- powering a toy

(Source: IK4-Ikerlan).

The solar panels we see tend to be rigid and black. Organic photovoltaic technology, by contrast, enables more translucent and more flexible solar panels in a range of colours to be manufactured. But this technology needs to meet certain requirements if it is to be accepted on the market: greater efficiency, longer duration and low production cost. So this research has set out "to analyse the capacity new materials have to absorb solar energy as well as to seek appropriate strategies to move from the lab to actual operations," pointed out Ikerne Etxebarria, a researcher of the UPV/EHU and IK4-Ikerlan.

The research team has analysed what the maximum size is for the cells, which must have a large surface area, if they are to work properly.  Various cells with different structures and surfaces have been designed for this purpose. Once the results had been analysed, "we found that in cells of up to approximately 6 cm2 the power was in direct proportion to their surface area. On larger surface areas, however, the performance of the cells falls considerably," stressed Etxebarria, who has reached the following conclusion: to be able to manufacture cells with a large surface area it is necessary to build  modules, to which cells with a smaller surface will be connected in series or in parallel, on the substrate itself. 

To manufacture these modules, the layers existing between the electrodes need to be structured, in other words, the cells have to be connected to each other. "Until now, that structuring has been done mechanically or by means of laser but with the risk of damaging the substrate. However, in this research we have developed a new automatic structuring technique," she pointed out. This technique involves transforming the features of the surface of the substrate.

Aim: to improve efficiency
Another of the aims of this research was to find a way of manufacturing highly efficient cells. To do this, the first step was to optimize the production process of cells based on different polymers, in order to achieve the maximum efficiency of these materials; secondly, polymers that absorb light at different wavelengths have been used to produce cells with a tandem structure in order to make them more efficient. "Each polymer absorbs light at a different wavelength. The ideal thing would be to take advantage of all the sun's rays, but there is no polymer capable of absorbing the light at all the wavelengths. So to be able to make the most efficient use of the sunlight, one of the possibilities is to build tandem-type structures, in other words, to fit the cells manufactured with different polymers one on top of the other," explained Etxebarria. These tandem-type structures can be connected in series or in parallel. "We have seen that after many measurements greater efficiency is achieved in the cells installed in series than in the ones fitted in parallel," added the researcher.

The production of cells manufactured using polymers or new materials will be much more cost-effective, since these polymers are produced in the laboratory, unlike silicon that has to be mined. Etxebarria works in the laboratory of IK4-Ikerlan trying out different polymers in the quest for suitable materials for manufacturing cells. "We try out (different) materials in small devices," she pointed out. Many materials of many types are in fact tried out and the most efficient ones are selected, in other words, those that capture the most solar energy and which make the most of it.

Additional information
Ikerne Etxebarria-Zubizarreta is a Doctor of Chemical Engineering. She works at the IK4-Ikerlan research centre. She submitted her PhD thesis entitled "Mini-Modules and Tandem Organic Solar Cells: Strategies to improve device efficiency" at the UPV/EHU and written up under the supervision of Iñigo López-Arbeloa, lecturer in the UPV/EHU's Department of Physical Chemistry, and Roberto Pacios-Castro, an IK4-Ikerlan researcher.

Matxalen Sotillo | Eurek Alert!
Further information:
http://www.ehu.es/p200-hmencont/en/contenidos/noticia/20140901_ikerne_etxebarria/en_etxebarr/20140901_ikerne_etxebarria.html

Further reports about: Organic electrodes layers manufacture materials solar panels structures technique wavelengths

More articles from Materials Sciences:

nachricht Combining the elements palladium and ruthenium for industry
22.09.2016 | National Institute for Materials Science

nachricht Defects at the spinterface disrupt transmission
21.09.2016 | Eberhard Karls Universität Tübingen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

How to merge two black holes in a simple way

26.09.2016 | Physics and Astronomy

Australian technology installed on world’s largest single-dish radio telescope

26.09.2016 | Physics and Astronomy

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>