Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future solar panels

03.09.2014

IK4-Ikerlan and the UPV/EHU-University of the Basque Country are exploring the limits of organic solar cells and how to manufacture more efficient cells

Conventional photovoltaic technology uses large, heavy, opaque, dark silicon panels, but this could soon change. The IK4-Ikerlan research centre is working within the X10D European project with new materials to produce solar panels in order to come up with alternatives to the current panels. What is needed to improve the functioning of cells with a large surface are materials that cost less to produce and offer greater energy efficiency.


Module -to which two cells have been connected in series- powering a toy

(Source: IK4-Ikerlan).

The solar panels we see tend to be rigid and black. Organic photovoltaic technology, by contrast, enables more translucent and more flexible solar panels in a range of colours to be manufactured. But this technology needs to meet certain requirements if it is to be accepted on the market: greater efficiency, longer duration and low production cost. So this research has set out "to analyse the capacity new materials have to absorb solar energy as well as to seek appropriate strategies to move from the lab to actual operations," pointed out Ikerne Etxebarria, a researcher of the UPV/EHU and IK4-Ikerlan.

The research team has analysed what the maximum size is for the cells, which must have a large surface area, if they are to work properly.  Various cells with different structures and surfaces have been designed for this purpose. Once the results had been analysed, "we found that in cells of up to approximately 6 cm2 the power was in direct proportion to their surface area. On larger surface areas, however, the performance of the cells falls considerably," stressed Etxebarria, who has reached the following conclusion: to be able to manufacture cells with a large surface area it is necessary to build  modules, to which cells with a smaller surface will be connected in series or in parallel, on the substrate itself. 

To manufacture these modules, the layers existing between the electrodes need to be structured, in other words, the cells have to be connected to each other. "Until now, that structuring has been done mechanically or by means of laser but with the risk of damaging the substrate. However, in this research we have developed a new automatic structuring technique," she pointed out. This technique involves transforming the features of the surface of the substrate.

Aim: to improve efficiency
Another of the aims of this research was to find a way of manufacturing highly efficient cells. To do this, the first step was to optimize the production process of cells based on different polymers, in order to achieve the maximum efficiency of these materials; secondly, polymers that absorb light at different wavelengths have been used to produce cells with a tandem structure in order to make them more efficient. "Each polymer absorbs light at a different wavelength. The ideal thing would be to take advantage of all the sun's rays, but there is no polymer capable of absorbing the light at all the wavelengths. So to be able to make the most efficient use of the sunlight, one of the possibilities is to build tandem-type structures, in other words, to fit the cells manufactured with different polymers one on top of the other," explained Etxebarria. These tandem-type structures can be connected in series or in parallel. "We have seen that after many measurements greater efficiency is achieved in the cells installed in series than in the ones fitted in parallel," added the researcher.

The production of cells manufactured using polymers or new materials will be much more cost-effective, since these polymers are produced in the laboratory, unlike silicon that has to be mined. Etxebarria works in the laboratory of IK4-Ikerlan trying out different polymers in the quest for suitable materials for manufacturing cells. "We try out (different) materials in small devices," she pointed out. Many materials of many types are in fact tried out and the most efficient ones are selected, in other words, those that capture the most solar energy and which make the most of it.

Additional information
Ikerne Etxebarria-Zubizarreta is a Doctor of Chemical Engineering. She works at the IK4-Ikerlan research centre. She submitted her PhD thesis entitled "Mini-Modules and Tandem Organic Solar Cells: Strategies to improve device efficiency" at the UPV/EHU and written up under the supervision of Iñigo López-Arbeloa, lecturer in the UPV/EHU's Department of Physical Chemistry, and Roberto Pacios-Castro, an IK4-Ikerlan researcher.

Matxalen Sotillo | Eurek Alert!
Further information:
http://www.ehu.es/p200-hmencont/en/contenidos/noticia/20140901_ikerne_etxebarria/en_etxebarr/20140901_ikerne_etxebarria.html

Further reports about: Organic electrodes layers manufacture materials solar panels structures technique wavelengths

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>