Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future solar panels

03.09.2014

IK4-Ikerlan and the UPV/EHU-University of the Basque Country are exploring the limits of organic solar cells and how to manufacture more efficient cells

Conventional photovoltaic technology uses large, heavy, opaque, dark silicon panels, but this could soon change. The IK4-Ikerlan research centre is working within the X10D European project with new materials to produce solar panels in order to come up with alternatives to the current panels. What is needed to improve the functioning of cells with a large surface are materials that cost less to produce and offer greater energy efficiency.


Module -to which two cells have been connected in series- powering a toy

(Source: IK4-Ikerlan).

The solar panels we see tend to be rigid and black. Organic photovoltaic technology, by contrast, enables more translucent and more flexible solar panels in a range of colours to be manufactured. But this technology needs to meet certain requirements if it is to be accepted on the market: greater efficiency, longer duration and low production cost. So this research has set out "to analyse the capacity new materials have to absorb solar energy as well as to seek appropriate strategies to move from the lab to actual operations," pointed out Ikerne Etxebarria, a researcher of the UPV/EHU and IK4-Ikerlan.

The research team has analysed what the maximum size is for the cells, which must have a large surface area, if they are to work properly.  Various cells with different structures and surfaces have been designed for this purpose. Once the results had been analysed, "we found that in cells of up to approximately 6 cm2 the power was in direct proportion to their surface area. On larger surface areas, however, the performance of the cells falls considerably," stressed Etxebarria, who has reached the following conclusion: to be able to manufacture cells with a large surface area it is necessary to build  modules, to which cells with a smaller surface will be connected in series or in parallel, on the substrate itself. 

To manufacture these modules, the layers existing between the electrodes need to be structured, in other words, the cells have to be connected to each other. "Until now, that structuring has been done mechanically or by means of laser but with the risk of damaging the substrate. However, in this research we have developed a new automatic structuring technique," she pointed out. This technique involves transforming the features of the surface of the substrate.

Aim: to improve efficiency
Another of the aims of this research was to find a way of manufacturing highly efficient cells. To do this, the first step was to optimize the production process of cells based on different polymers, in order to achieve the maximum efficiency of these materials; secondly, polymers that absorb light at different wavelengths have been used to produce cells with a tandem structure in order to make them more efficient. "Each polymer absorbs light at a different wavelength. The ideal thing would be to take advantage of all the sun's rays, but there is no polymer capable of absorbing the light at all the wavelengths. So to be able to make the most efficient use of the sunlight, one of the possibilities is to build tandem-type structures, in other words, to fit the cells manufactured with different polymers one on top of the other," explained Etxebarria. These tandem-type structures can be connected in series or in parallel. "We have seen that after many measurements greater efficiency is achieved in the cells installed in series than in the ones fitted in parallel," added the researcher.

The production of cells manufactured using polymers or new materials will be much more cost-effective, since these polymers are produced in the laboratory, unlike silicon that has to be mined. Etxebarria works in the laboratory of IK4-Ikerlan trying out different polymers in the quest for suitable materials for manufacturing cells. "We try out (different) materials in small devices," she pointed out. Many materials of many types are in fact tried out and the most efficient ones are selected, in other words, those that capture the most solar energy and which make the most of it.

Additional information
Ikerne Etxebarria-Zubizarreta is a Doctor of Chemical Engineering. She works at the IK4-Ikerlan research centre. She submitted her PhD thesis entitled "Mini-Modules and Tandem Organic Solar Cells: Strategies to improve device efficiency" at the UPV/EHU and written up under the supervision of Iñigo López-Arbeloa, lecturer in the UPV/EHU's Department of Physical Chemistry, and Roberto Pacios-Castro, an IK4-Ikerlan researcher.

Matxalen Sotillo | Eurek Alert!
Further information:
http://www.ehu.es/p200-hmencont/en/contenidos/noticia/20140901_ikerne_etxebarria/en_etxebarr/20140901_ikerne_etxebarria.html

Further reports about: Organic electrodes layers manufacture materials solar panels structures technique wavelengths

More articles from Materials Sciences:

nachricht Spin glass physics with trapped ions
30.05.2016 | ICFO-The Institute of Photonic Sciences

nachricht 3-D model reveals how invisible waves move materials within aquatic ecosystems
30.05.2016 | University of Waterloo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>