Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future Flexible Electronics Based on Carbon Nanotubes

24.09.2014

Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers

Researchers from the University of Texas at Austin and Northwestern University have demonstrated a new method to improve the reliability and performance of transistors and circuits based on carbon nanotubes (CNT), a semiconductor material that has long been considered by scientists as one of the most promising successors to silicon for smaller, faster and cheaper electronic devices. The result appears in a new paper published in the journal Applied Physics Letters, from AIP Publishing.


S. Jang and A. Dodabalapur/University of Texas at Austin

Optical images of individual SWCNT field-effect transistors

In the paper, researchers examined the effect of a fluoropolymer coating called PVDF-TrFE on single-walled carbon nanotube (SWCNT) transistors and ring oscillator circuits, and demonstrated that these coatings can substantially improve the performance of single-walled carbon nanotube devices. PVDF-TrFE is also known by its long chemical name polyvinyledenedifluoride-tetrafluoroethylene.

“We attribute the improvements to the polar nature of PVDF-TrFE that mitigates the negative effect of impurities and defects on the performance of semiconductor single-walled carbon nanotubes,” said Ananth Dodabalapur, a professor in the Cockrell School of Engineering at UT Austin who led the research. “The use of [PVDF-TrFE] capping layers will be greatly beneficial to the adoption of single-walled carbon nanotube circuits in printed electronics and flexible display applications.”

The work was done in collaboration between Dodabalapur’s group at UT Austin and Mark Hersam’s group at Northwestern University as part of a Multi-University Research Initiative (MURI) supported by the Office of Naval Research.

A potential successor to silicon chips

Single-walled carbon nanotubes (SWCNT) are just about the thinnest tubes that can be wrought from nature. They are cylinders formed by rolling up a material known as graphene, which is a flat, single-atom-thick layer of carbon graphite. Most single-walled carbon nanotubes typically have a diameter close to 1 nanometer and can be twisted, flattened and bent into small circles or around sharp bends without breaking. These ultra-thin carbon filaments have high mobility, high transparency and electric conductivity, making them ideal for performing electronic tasks and making flexible electronic devices like thin film transistors, the on-off switches at the heart of digital electronic systems.

“Single-walled carbon nanotube field-effect transistors (FETs) have characteristics similar to polycrystalline silicon FETs, a thin film silicon transistor currently used to drive the pixels in organic light-emitting (OLED) displays,” said Mark Hersam, Dodabalapur’s coworker and a professor in the McCormick School of Engineering and Applied Science at Northwestern University. “But single-walled carbon nanotubes are more advantageous than polycrystalline silicon in that they are solution-processable or printable, which potentially could lower manufacturing costs.”

The mechanical flexibility of single-walled carbon nanotubes also should allow them to be incorporated into emerging applications such as flexible electronics and wearable electronics, he said.

For years, scientists have been experimenting with carbon nanotube devices as a successor to silicon devices, as silicon could soon meet its physical limit in delivering increasingly smaller, faster and cheaper electronic devices. Although circuits made with single-walled carbon nanotube are expected to be more energy-efficient than silicon ones in future, their drawbacks in field-effect transistors, such as high power dissipation and less stability, currently limit their applications in printed electronics, according to Dodabalapur.

A new technique to improve the performance of SWCNTs devices

To overcome the drawbacks of single-walled carbon nanotube field-effect transistors and improve their performance, the researchers deposited PVDF-TrFE on the top of self-fabricated single-walled carbon nanotube transistors by inkjet printing, a low-cost, solution based deposition process with good spatial resolution. The fluoropolymer coated film was then annealed or heated in air at 140 degrees Celsius for three minutes. Later, researchers observed the differences of device characteristics.

“We found substantial performance improvements with the fluoropolymer coated single-walled carbon nanotube both in device level and circuit level,” Dodabalapur noted.

On the device level, significant decreases occur in key parameters such as off-current magnitude, degree of hysteresis, variation in threshold voltage and bias stress degradation, which, Dodabalapur said, means a type of more energy-efficient, stable and uniform transistors with longer life time.

On the circuit level, since a transistor is the most basic component in digital circuits, the improved uniformity in device characteristics, plus the beneficial effects from individual transistors eventually result in improved performance of a five-stage complementary ring oscillator circuit, one of the simplest digital circuits.

“The oscillation frequency and amplitude [of the single-walled carbon nanotube ring oscillator circuit] has increased by 42 percent and 250 percent respectively,” said Dodabalapur. The parameters indicate a faster and better performing circuit with possibly reduced power consumption.

Dodabalapur and his coworkers attributed the improvements to the polar nature of PVDF-TrFE.

“Before single-walled carbon nanotube field-effect transistors were fabricated by inkjet printing, they were dispersed in an organic solvent to make a printable ink. After the fabrication process, there could be residual chemicals left [on the device], causing background impurity concentration,” Dodabalapur explained. “These impurities can act as charged defects that trap charge carriers in semiconductors and reduce carriers’ mobility, which eventually could deteriorate the performance of transistors.”

PVDF-TrFE is a polar molecule whose negative and positive charges are separated on different ends of the molecule, Dodabalapur said. The two charged ends form an electric bond, or dipole, in between. After the annealing process, the dipoles in PVDF-TrFE molecules uniformly adopt a stable orientation that tends to cancel the effects of the charged impurities in single-walled carbon nanotube field-effect transistors, which facilitated carrier flow in the semiconductor and improved device performance.

To confirm their hypothesis, Dodabalapur and his coworkers performed experiments comparing the effects of polar and non-polar vapors on single-walled carbon nanotube field-effect transistors. The results support their assumption.

The next step, Dodabalapur said, is to implement more complex circuits with single-walled carbon nanotube field-effect transistors.

The article, "Fluoropolymer coatings for improved carbon nanotube transistors device and circuit performance" is authored by Seonpil Jang, Bongjun Kim, Michael L. Geier, Pradyumna L. Prabhumirashi, Mark C. Hersam and Ananth Dodabalapur. It appears in the journal Applied Physics Letters on September 23, 2014 (DOI: 10.1063/1.4895069). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/105/12/10.1063/1.4895069

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

Contact Information

Jason Socrates Bardi
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>