Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Funding approved for a Franco-German project looking at the synthesis of non-conducting surfaces

23.01.2012
Cooperation between Professor Dr. Angelika Kühnle of Mainz University and André Gourdon of CEMES-CNRS

Since early January 2012, Angelika Kühnle, Professor of Physical Chemistry at Johannes Gutenberg University Mainz, and André Gourdon, Director of the Materials Science Institute CEMES-CNRS in Toulouse, France, have been jointly studying the synthesis of organic molecules on non-conducting surfaces.

The two leading scientists had submitted a successful application for this funding award offered by the German Research Foundation and its French counterpart, the ANR. "It is not easy to get a DFG-ANR funding as the competition is quite fierce."

Both Kühnle and Gourdon plan to support postgraduate researchers in Mainz and Toulouse with the €500,000 they have been awarded. They have also clearly outlined the responsibility for the various aspects of the project. "The work group at CEMES-CNRS is going to produce the starting materials in the form of precursor molecules," explains Kühnle.

"In Mainz, it will then be down to us to get these molecules to react with each other on non-conducting surfaces, which is much more difficult than on conducting surfaces. Then we will use special microscopes to generate images of the newly-created, larger molecules." It is hoped that the results of this 3-year project will contribute towards the development of so-called "molecular wires" to be used for electronic circuitry in devices such as computers.

Angelika Kühnle and her work group also belong to the proposed Cluster of Excellence Molecularly Controlled Non-Equilibrium (MCNE) at Johannes Gutenberg University Mainz, which has made it through to the decisive final selection round of the German Federal Excellence Competition.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14941.php
http://www.mcne.uni-mainz.de/index_ENG.php

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>