Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functional materials: Two ways to kill

31.08.2012
Graphene-based materials kill bacteria through one of two possible mechanisms. Researchers at A*STAR Singapore Institute of Manufacturing Technology and co-workers have now compared the antibacterial activity of graphite, graphite oxide, graphene oxide and reduced graphene oxide using the model bacterium Escherichia coli.
The discovery of graphene has brought much excitement to the nanotechnology community. Much of this excitement is due to the possibility of deriving graphene-based materials with applications in electronics, energy storage, sensing and biomedical devices. Despite the potential, however, there is a real concern that graphene-based materials may have deleterious effects on human health and the natural environment.

One particularly interesting aspect of this subject is the toxic effects of graphene-based materials on the microscopic world of bacteria. For this very reason, Jun Wei at the A*STAR Singapore Institute of Manufacturing Technology and co-workers have now compared the antibacterial activity of graphite, graphite oxide, graphene oxide and reduced graphene oxide using the model bacterium Escherichia coli. They showed that the two graphene-based materials kill substantially more bacteria than two graphite-based materials — with graphene oxide being the top performer.

Interestingly, graphene oxide particles had the smallest size of all the four graphene materials as measured by dynamic light scattering. Wei and co-workers believe that particles of reduced graphene oxide were larger because they aggregated both laterally and in three dimensions.

In fact, the size of the particles could well be the key to why graphene oxide is so deadly to bacteria. When the researchers studied the affected cells using scanning electron microscopy, they saw that most of the E. coli cells were individually wrapped by layers of graphene oxide. In contrast, E. coli cells were usually embedded in the larger reduced-graphene-oxide aggregates (see image). A similar cell-trapping mechanism was operational in the graphite-based materials.

So why does cell-wrapping kill more cells than cell-trapping? The researchers believe that the direct contact of cell surface with graphene causes membrane stress and irreversible damage.

Wei and co-workers also investigated chemical mechanisms by which the materials could disrupt and kill bacteria. They found that the oxidation of glutathione, an important cellular antioxidant, occurred on exposure to graphite and reduced graphene oxide. “It might be that these structures act as conducting bridges extracting electrons from glutathione molecules and releasing them into the external environment,” says Wei.

Intriguingly, while the effect of the membrane-disrupting mechanisms dies away after four hours of incubation, the oxidation mechanism shows only minor changes.

“With the knowledge obtained in this study, we envision that physicochemical properties of graphene-based materials, such as the density of functional groups, size and conductivity can be better tailored to either reduce environmental risks or increase application potential,” says Wei.

The A*STAR-affiliated researchers contributing to this research are from the Singapore Institute of Manufacturing Technology

References:
Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J. et al. Antibacterial activity of graphite, graphite oxide, graphene oxide and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>