Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel Cell Innovation: Novel cathode materials for SOFC with high performance and ...

14.08.2013
... strong reliability at the intermediate temperature

Researchers from Ulsan National Institute of Science and Technology (UNIST), Georgia Institute of Technology and Dong-Eui University have developed a novel cathode material which has outstanding performance and robust reliability even at the intermediate temperature range.

Researchers from Ulsan National Institute of Science and Technology (UNIST), Georgia Institute of Technology and Dong-Eui University have developed a novel cathode material which has outstanding performance and robust reliability even at the intermediate temperature range.

This research was published in Scientific Reports on August 13. (Title: Highly Efficient and robust cathode materials for low-temperature solid fuel cells: PrBa0.5Sr0.5Co2-xFexO5+ä )

As high power density devices, fuel cells can convert chemical energy directly into electric power very efficiently and environmentally friendly. Solid oxide fuel cells (SOFCs), based on an oxide ion conducting electrolyte, have several advantages over other types of fuel cells, including relatively inexpensive material costs, low sensitivity to impurities in the fuel, and high overall efficiency.

To make SOFC technology more affordable, the operating temperature must be further reduced so that substantially less expensive materials may be used for the cell components. Also there will be more choices of materials for other components with lower operating temperature.

However, at the low operating temperature, the problem is that the efficiency drop by the cathode is especially dramatic than the one due to the anode and/or electrolyte. It means that the cathode, as a key component of SOFC, contributes the most to the polarization loss during intermediate temperature operation. As a result, the development of feasible low temperature SOFCs requires the generation of highly efficient cathode materials.,

A UNIST research team tried to co-dope Sr and Fe and succeeded in yielding remarkable out-performance to present materials at lower operating temperature. The optimized composition has facilitated excellent oxygen reduction reaction and the novel structure has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions.

“The hardest part of this research was finding optimum composition of Sr and Fe for the best performance and robustness,” said Prof. Kim. “Previously various researches trying to dope Sr to perovskite structure had been made by many other groups. But none of them was successful for the better performance at the low operating temperature.”

The new material developed by the UNIST research team led by Prof. Guntae Kim, could be used at significantly low temperature SOFC with higher efficiency and solid reliability than the previously reported materials.

This new novel cathode material enables the fuel cell designers have more flexible choices on the materials of fuel cell components, which leads to the lower fuel cell cost and, finally, to the step closer to the highly efficient and reliable fuel cells.

This research was supported by World Class University (WCU) program and Mid-career Researcher Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology and the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning grant funded by the Ministry of Knowledge Economy.

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://gunslab.unist.ac.kr/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>