Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fuel Cell Innovation: Novel cathode materials for SOFC with high performance and ...

14.08.2013
... strong reliability at the intermediate temperature

Researchers from Ulsan National Institute of Science and Technology (UNIST), Georgia Institute of Technology and Dong-Eui University have developed a novel cathode material which has outstanding performance and robust reliability even at the intermediate temperature range.

Researchers from Ulsan National Institute of Science and Technology (UNIST), Georgia Institute of Technology and Dong-Eui University have developed a novel cathode material which has outstanding performance and robust reliability even at the intermediate temperature range.

This research was published in Scientific Reports on August 13. (Title: Highly Efficient and robust cathode materials for low-temperature solid fuel cells: PrBa0.5Sr0.5Co2-xFexO5+ä )

As high power density devices, fuel cells can convert chemical energy directly into electric power very efficiently and environmentally friendly. Solid oxide fuel cells (SOFCs), based on an oxide ion conducting electrolyte, have several advantages over other types of fuel cells, including relatively inexpensive material costs, low sensitivity to impurities in the fuel, and high overall efficiency.

To make SOFC technology more affordable, the operating temperature must be further reduced so that substantially less expensive materials may be used for the cell components. Also there will be more choices of materials for other components with lower operating temperature.

However, at the low operating temperature, the problem is that the efficiency drop by the cathode is especially dramatic than the one due to the anode and/or electrolyte. It means that the cathode, as a key component of SOFC, contributes the most to the polarization loss during intermediate temperature operation. As a result, the development of feasible low temperature SOFCs requires the generation of highly efficient cathode materials.,

A UNIST research team tried to co-dope Sr and Fe and succeeded in yielding remarkable out-performance to present materials at lower operating temperature. The optimized composition has facilitated excellent oxygen reduction reaction and the novel structure has created pore channels that dramatically enhance oxygen ion diffusion and surface oxygen exchange while maintaining excellent compatibility and stability under operating conditions.

“The hardest part of this research was finding optimum composition of Sr and Fe for the best performance and robustness,” said Prof. Kim. “Previously various researches trying to dope Sr to perovskite structure had been made by many other groups. But none of them was successful for the better performance at the low operating temperature.”

The new material developed by the UNIST research team led by Prof. Guntae Kim, could be used at significantly low temperature SOFC with higher efficiency and solid reliability than the previously reported materials.

This new novel cathode material enables the fuel cell designers have more flexible choices on the materials of fuel cell components, which leads to the lower fuel cell cost and, finally, to the step closer to the highly efficient and reliable fuel cells.

This research was supported by World Class University (WCU) program and Mid-career Researcher Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology and the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning grant funded by the Ministry of Knowledge Economy.

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://gunslab.unist.ac.kr/
http://www.researchsea.com

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

How cheetahs stay fit and healthy

24.03.2017 | Life Sciences

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>