Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From metal to insulator and back again

23.04.2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Review Letters.

Metals are compounds that are capable of conducting the flow of electrons that make up an electric current. Other materials, called insulators, are not capable of conducting an electric current. At low temperatures, all materials can be classified as either insulators or metals.


This is a view of the localized electrons in the unusual insulating state of Li under pressure, courtesy of Russell Hemley and Ivan Naumov.

Credit: Russell Hemley and Ivan Naumov

Insulators can be pushed across the divide from insulator to metal by tuning their surrounding conditions, particularly by placing them under pressure. It was long believed that once such a material was converted into a metal under pressure, it would stay that way forever as the pressure was increased. This idea goes back to the birth of quantum mechanics in the early decades of the last century.

But it was recently discovered that certain groups of metals become insulating under pressure-a remarkable finding that was not previously thought possible.

For example, lithium goes from being a metallic conductor to a somewhat resistant semiconductor under around 790,000 times normal atmospheric pressure (80 gigapascals) and then becomes fully metallic again under around 1.2 million times normal atmospheric pressure (120 gigapascals). Sodium enters an insulating state at pressures of around 1.8 million times normal atmospheric pressure (180 gigapascals). Calcium and nickel are predicted to have similar insulating states before reverting to being metallic.

Hemley and Naumov wanted to determine the unifying physics framework underlying these unexpected metal-to-insulator-to-metal transitions.

"The principles we developed will allow for predictions of when metals will become insulators under pressure, as well as the reverse, the when-insulators-can-become-metals transition," Naumov said.

The onsets of these transitions can be determined by the positions of electrons within the basic structure of the material. Insulators typically become metallic by a reduction in the spacing between atoms in the material. Hemley and Naumov demonstrated that for a metal to become an insulator, these reduced-spacing overlaps must be organized in a specific kind of asymmetry that was not previously recognized. Under these conditions, electrons localize between the atoms and do not freely flow as they do in the metallic form.

"This is yet another example of how extreme pressure is an important tool for advancing our understanding principles of the nature of materials at a fundamental level. The work will have implications for the search for new energy materials." Hemley said.

###

This work was supported by EFree, an Energy Frontier Research Center funded by the DOE Office of Science Basic Energy Sciences. The infrastructure and facilities are supported by NNSA and CDAC.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Contact

Russell Hemley
rhemley@carnegiescience.edu
202-478-8951

 @carnegiescience

http://www.ciw.edu 

Russell Hemley | idw - Informationsdienst Wissenschaft

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>