Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer Speeds Up Thin Film Development And Industrialization With Deposition System From Impact Coatings

29.05.2012
Fraunhofer Institute for Surface Engineering and Thin Films IST has developed a strain gauge sensor directly coated on the work piece surface with high strain sensitivity and temperature compensation. The development showed that by using IC300 from Impact Coatings, more than 10 times higher output was achieved, compared to a traditional box coater.

Impact Coatings has delivered an industrial a high-rate sputtering system, InlineCoater 300, to Fraunhofer. Fraunhofer is using the high throughput to increase the speed of development.

The IC300 offers the thin film scientists the possibility to test more than 100 different parameter setups in a day, which gives a substantial reduction of the development time. Using the same system for development as for future industrial production also shortens the time to market.

Finally, Fraunhofer has shown that the InlineCoater-system gives more than 10 times higher production output compared to a traditional boxcoater PVD-system. The higher productivity reduces the manufacturing cost and increases profitability.

The strain gauge sensor, based on a metal alloyed diamond-like carbon coating, is the first product Fraunhofer has developed using the IC300 deposition system.

Fraunhofer is now looking for industrial companies interested in producing this product. Impact Coatings is involved as a partner to Fraunhofer and deliveres the generic deposition system while Fraunhofer delivers the deposition process and know-how.

“The cooperation and the deposition systems from Impact Coatings increases our development speed and also enables us to do rapid R&D, industrialization and production using the same deposition system. Once we have developed a coating, the same system and process can easily be transferred to industry” says Dr Ralf Bandorf, Group Manager Fraunhofer IST.

“Fraunhofer is a high knowledge institute and we are happy to work together with them to develop new coatings and application areas. Impact Coatings acts as a partner to deliver the deposition system and Fraunhofer develops the coating; this piezoresistive coating is a good example of this cooperation” says Dr Henrik Ljungcrantz, CEO of Impact Coatings.

Impact Coatings AB develops and commercializes innovative technology for PVD surface treatment. PVD is a method to vacuum coat thin films of metals and ceramics.

The company’s main product is the deposition material Silver MaxPhase™, which can replace gold on electrical contacts. For efficient industrial coating of the material, the company has developed the deposition systems ReelCoater™, InlineCoater™ and PlastiCoater™. These systems are also used for deposition of other materials, e.g. in decorative and optical applications.

The company was founded in 1997. Following a period of development and establishing products and services, an international exploration has now stared. Target customers are primarily component manufacturers within the electronics and automotive industries.

Impact Coatings’ share is traded at Nasdaq OMX Stockholm First North since 2004. Remium Nordic AB is the company’s Certified Adviser.

| www.cisionwire.com
Further information:
http://www.ist.fraunhofer.de

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>