Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer IFAM is developing de-icing technologies for aircraft with European and Japanese partners

14.06.2013
The experts of Paint/Lacquer Technology at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Bremen are currently developing novel de-icing technologies for the next generation of aircraft.

This work is being undertaken in an international project with European and Japanese partners. The objective is to develop an integrated system comprising three synergistic components: Active de-icing technology, functional coatings which assist the de-icing function, and sensor technology which not only monitors the icing in real-time but also the de-icing.


Schematic representation of the Fraunhofer IFAM wind tunnel in which icing tests under realistic conditions will be carried out in the future. (© Fraunhofer IFAM)

The surfaces of aircraft are prone to icing during flights due to the fact that they are exposed to extremely low temperatures (down to -50 degrees Celsius at altitudes of up to 10,000 meters) and also water in the atmosphere, for example in clouds and precipitation.

The formation of ice, particularly on the wings, can lead to enormous problems due to its adverse effect on the aerodynamics and due to its weight. Besides causing higher fuel consumption and greater CO2 emissions, the ice is also a risk to the safety of an aircraft: e. g. for 1998 to 2007, the Federal Aviation Administration (FAA) in the USA recorded in its database a total of 886 incidents related to icing (G. L. Dillingham, AVIATION SAFETY – Preliminary Information on Aircraft Icing and Winter Operations. United States Government Accountability Office. Testimony before the Subcommittee on Aviation, Committee on Transportation and Infrastructure, House of Representatives (GAO-10-441T, February 2010)).

For this reason, an enormous amount of work is current being undertaken on the early detection of ice formation, the suppression of ice formation, and the removal of any ice. For example, waste heat from the engines is being utilized to heat the front edges of the wings. Other de-icing systems are based on mechanical ice removal using so-called "rubber boots". These rubber boots have air chambers which can be pumped up when needed to remove the ice from the surface.

The JEDI ACE (Japanese-European De-Icing Aircraft Collaborative Exploration) project, which was started in November 2012, aims to develop a multicomponent de-icing system suitable for the next generation of aircraft that are being built using, amongst other things, lightweight carbon fiber reinforced plastics (CFRPs). The focus here is on safety and efficiency aspects. "The new system will require considerably less energy than current system, due to the combination of innovative de-icing technologies and real-time sensors, and will decrease the number of icing-related in-flight incidents by up to 80 percent", says Gerhard Pauly of the Fraunhofer IFAM who is managing the international project.

Fraunhofer IFAM researchers are involved with the development of coatings and testing the icing properties of the surfaces. These coatings will assist the current de-icing technologies that are based on thermal and/or mechanical principles, by reducing the adhesion of the ice and so making its removal easier. As such, the efficiency of overall de-icing will be significantly improved. "The challenge is to ensure that the coatings remain effective for several years despite the high stress on the aircraft caused by, amongst other things, erosion and UV radiation and we are at present developing coating systems that have this long-term stability", explains coating expert Nadine Rehfeld of the Fraunhofer IFAM who is the scientific leader of the international project. In addition, the suitability of so-called "shape memory materials" as mechanical actuators is being studied which – when incorporated into a coating – allow ice removal by changing the surface profile. The first results on this were presented at a project meeting in Tokyo in May 2013 attended by a number of project partners: Dassault Aviation (France), University Rovira i Virgili/Centre for University Studies in Aviation (Spain), Fuji Heavy Industries Aerospace Company (Japan), Japan Aerospace Exploration Agency (Japan), and Kanagawa Institute of Technology (Japan). The next phase of the project work was also discussed at this meeting.

Another project goal within JEDI ACE is the construction of a wind tunnel by scientists from the Fraunhofer IFAM. This will enable newly developed de-icing systems to be tested under icing conditions. "Temperatures of -30 degrees Celsius and wind speeds of up to 350 kilometers per hour will be able to be attained in this tunnel. This will allow us to simulate real conditions, including with supercooled water which is also present in liquid form at temperatures below 0 degrees Celsius", explains Nadine Rehfeld.

The project is being funded by the European Commission and the Japanese Ministry of Economy, Trade and Industry (METI). The Fraunhofer IFAM is leading the scientific work and coordinating the project.

Partners of the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in the JEDI ACE project are
• Dassault Aviation (France)
• University Rovira i Virgili/Centre for University Studies in Aviation (Spain)
• Fuji Heavy Industries Aerospace Company (Japan)
• Japan Aerospace Exploration Agency (Japan)
• Kanagawa Institute of Technology (Japan)

Contact
Paris Air Show Le Bourget 2013 I 17 to 23 June 2013 I Paris I France
Hall 1 I Booth G 316
Gerhard Pauly I Michael Wolf

Anne-Grete Becker | Fraunhofer-Institut
Further information:
http://www.ifam.fraunhofer.de

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>