Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of girl's best friend is lighter than ever

18.05.2011
By combining high pressure with high temperature, Livermore researchers have created a nanocyrstalline diamond aerogel that could improve the optics for something as big as a telescope or as small as the lenses in eyeglasses.

Aerogels are a class of materials that exhibit the lowest density, thermal conductivity, refractive index and sound velocity of any bulk solid. Aerogels are among the most versatile materials available for technical applications due to their many exceptional properties.

This material has chemists, physicists, astronomers, and materials scientists utilizing its properties in myriad applications, from a water purifier for desalinizing seawater to installation on a NASA satellite as a meteorite particle collector.

In new research appearing in the May 9 online edition of the Proceedings of the National Academy of Sciences, a Livermore team created a diamond aerogel from a standard carbon-based aerogel precursor using a laser-heated diamond anvil cell.

A diamond anvil cell consists of two opposing diamonds with the sample compressed between them. It can compress a small piece of material (tens of micrometers or smaller) to extreme pressures, which can exceed 3 million atmospheres. The device has been used to recreate the pressure existing deep inside planets, creating materials and phases not observed under normal conditions. Since diamonds are transparent, intense laser light also can be focused onto the sample to simultaneously heat it to thousands of degrees.

The new form of diamond has a very low density similar to that of the precursor of around 40 milligrams per cubic centimeter, which is only about 40 times denser than air.

The diamond aerogel could have applications in antireflection coatings, a type of optical coating applied to the surface of lenses and other optical devices to reduce reflection. Less light is lost, improving the efficiency of the system. It can be applied to telescopes, binoculars, eyeglasses or any other device that may require reflection reduction. It also has potential applications in enhanced or modified biocompatibility, chemical doping, thermal conduction and electrical field emission.

In creating diamond aergoels, lead researcher Peter Pauzauskie, a former Lawrence fellow now at the University of Washington, infused the pores of a standard, carbon-based aerogel with neon, preventing the entire aerogel from collapsing on itself.

At that point, the team subjected the aerogel sample to tremendous pressures and temperatures (above 200,000 atmospheres and in excess of 2,240 degrees Fahrenheit), forcing the carbon atoms within to shift their arrangement and create crystalline diamonds.

The success of this work also leads the team to speculate that additional novel forms of diamond may be obtained by exposing appropriate precursors to the right combination of high pressure and temperature.

Livermore researchers on the project include: Jonathan Crowhurst, Marcus Worsley, Ted Laurence, Yinmin "Morris" Wang, Trevor Wiley, Kenneth Visbeck, William Evans, Joseph Zaug and Joe Satcher Jr.

More Information
Synthesis and characterization of a nanocyrstalline diamond aerogel
Proceedings of the National Academy of Sciences, May 9, 2011
Improving Catalysis with a "Noble" Material
Science & Technology Review, April/May 2009
Advanced carbon aerogels for energy applications
Newsline, March 14, 2011
Novel Materials from Solgel Chemistry
Science & Technology Review, May 2005
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Materials Sciences:

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>