Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forging a new periodic table using nanostructures

18.02.2013
Artificial atoms and bonds provide a new set of building blocks for future materials

Northwestern University's Chad A. Mirkin, a world-renowned leader in nanotechnology research and its application, has developed a completely new set of building blocks that is based on nanoparticles and DNA. Using these tools, scientists will be able to build -- from the bottom up, just as nature does -- new and useful structures.

Mirkin will discuss his research in a session titled "Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New Periodic Table" at the American Association for the Advancement of Science (AAAS) annual meeting in Boston. The presentation will be held from noon to 1 p.m. Sunday, Feb. 17, in Room 302 of the Hynes Convention Center.

"We have a new set of building blocks," Mirkin said. "Instead of taking what nature gives you, we can control every property of the new material we make. We've always had this vision of building matter and controlling architecture from the bottom up, and now we've shown it can be done."

Using nanoparticles and DNA, Mirkin has built more than 200 different crystal structures with 17 different particle arrangements. Some of the lattice types can be found in nature, but he also has built new structures that have no naturally occurring mineral counterpart.

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He is director of Northwestern's International Institute for Nanotechnology.

Mirkin can make new materials and arrangements of particles by controlling the size, shape, type and location of nanoparticles within a given particle lattice. He has developed a set of design rules that allow him to control almost every property of a material.

New materials developed using his method could help improve the efficiency of optics, electronics and energy storage technologies. "These same nanoparticle building blocks have already found wide-spread commercial utility in biology and medicine as diagnostic probes for markers of disease," Mirkin added.

With this present advance, Mirkin uses nanoparticles as "atoms" and DNA as "bonds." He starts with a nanoparticle, which could be gold, silver, platinum or a quantum dot, for example. The core material is selected depending on what physical properties the final structure should have.

He then attaches hundreds of strands of DNA (oligonucleotides) to the particle. The oligonucleotide's DNA sequence and length determine how bonds form between nanoparticles and guide the formation of specific crystal lattices.

"This constitutes a completely new class of building blocks in materials science that gives you a type of programmability that is extraordinarily versatile and powerful," Mirkin said. "It provides nanotechnologists for the first time the ability to tailor properties of materials in a highly programmable way from the bottom up."

Symposium information:

"Nucleic Acid-Modified Nanostructures as Programmable Atom Equivalents: Forging a New Periodic Table"
Noon to 1 p.m. Sunday, February 17
Room 302 (Hynes Convention Center)

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Materials Sciences:

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>