Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying becomes lighter, cheaper and environmentally friendlier thanks to 'Structural Health Monitoring'

13.10.2009
At the 4th Composites Europe, which is being held from 27 to 29 October at Stuttgart, Germany, the Fraunhofer Institute for Structural Durability and System Reliability LBF is presenting a spectacular, four-metre-high exhibit - an SHM mock-up of a light aircraft wing equipped with the latest sensor technology.

Because of their lightweight construction, fibre-reinforced composites offer particular advantages in the aviation sector. However, their more complex damage behaviour relative to metallic materials means that this lightness cannot always be fully exploited.

In aviation, for example, the impact of foreign objects on reinforced composite structures represents a particular danger, limiting their potential uses and frequently causing greater safety factors that need to be counteracted with a certain amount of over-dimensioning. However, sensors in specific parts, such as the wings, can identify at an early stage structural damage that would otherwise not be externally visible, and reduce inspection demands.

The operating safety of the structure is ensured by the design and by manual inspections held at regular intervals. In the future, it will be possible to reduce costs and weight thanks to supplementary, automatic monitoring with structure-integrated sensors.

SHM - A component's nervous system

The basic idea: Structural Health Monitoring acts like the nervous system for a component. Sensors and evaluation electronics register external impacts and detect any damage.

In particular, foreign objects damage such as hail or bird strikes present a considerable danger to aircraft. Aircraft can also be chipped by grit from the runway or damaged by tools dropped during maintenance work. With fibre-reinforced sandwich structures, such damage is very rarely visible on the outside. As yet, the operating safety is therefore ensured by extensive inspections and the corresponding design of the components.

New SHM systems allow costs, weight and maintenance to be reduced, thus enabling lightweight structures to fully exploit their potential. Self-diagnosis reduces downtimes and the reduction in weight cuts fuel consumption. Continuous monitoring of the aircraft fuselage, even in areas difficult to access, reduces inspection demands. Electrical and optical strain gauges as well as piezoelectric fibre modules and accelerometers are used to record measurements.

In integrating various sensor technologies in the production of aircraft structures, the Fraunhofer LBF works closely in an interdisciplinary manner with sensor technology companies and composite materials manufacturers. The structural part of the aircraft wing shown in Stuttgart was constructed by the Fraunhofer LBF in conjunction with the Darmstadt University of Applied Sciences, with additional support from Evonik Röhm, Saertex and Hexion.

Sensors inside the aircraft wing measure the structural loads. In addition to eight piezoelectric modules from the Fraunhofer LBF, 18 electrical and 16 optical load transducers from HBM combined with sensor film from Fujifilm Prescale were integrated in the wing during its manufacture. The loading on the upper and lower side of the wing is measured with a rate of up to 200 Hz. As soon as the data exceeds a predefined loading limit, an alarm signal is activated. Software from HBM saves and analyses all the data from the electrical and optical measurements.

Clean Sky JTI: Environmentally friendly technology for the aviation industry
The structural health monitoring (SHM) will also be further developed within the Clean Sky Joint Technology Initiative, which has the intention to make flying environmentally friendlier. The Clean Sky Joint Technology Initiative aims to considerably reduce the environmental impact caused by aviation travel while simultaneously increasing the competitiveness of the European aviation industry. With a budget of 1.6 billion euros, it is the largest European research programme focussing on this topic. Beside renowned industrial companies, the Fraunhofer Society is one of the partners in this initiative, with the Fraunhofer LBF in Darmstadt coordinating all activities conducted by the Fraunhofer Institutes.

Anke Zeidler-Finsel | Fraunhofer Gesellschaft
Further information:
http://www.lbf.fhg.de/

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>