Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flying becomes lighter, cheaper and environmentally friendlier thanks to 'Structural Health Monitoring'

13.10.2009
At the 4th Composites Europe, which is being held from 27 to 29 October at Stuttgart, Germany, the Fraunhofer Institute for Structural Durability and System Reliability LBF is presenting a spectacular, four-metre-high exhibit - an SHM mock-up of a light aircraft wing equipped with the latest sensor technology.

Because of their lightweight construction, fibre-reinforced composites offer particular advantages in the aviation sector. However, their more complex damage behaviour relative to metallic materials means that this lightness cannot always be fully exploited.

In aviation, for example, the impact of foreign objects on reinforced composite structures represents a particular danger, limiting their potential uses and frequently causing greater safety factors that need to be counteracted with a certain amount of over-dimensioning. However, sensors in specific parts, such as the wings, can identify at an early stage structural damage that would otherwise not be externally visible, and reduce inspection demands.

The operating safety of the structure is ensured by the design and by manual inspections held at regular intervals. In the future, it will be possible to reduce costs and weight thanks to supplementary, automatic monitoring with structure-integrated sensors.

SHM - A component's nervous system

The basic idea: Structural Health Monitoring acts like the nervous system for a component. Sensors and evaluation electronics register external impacts and detect any damage.

In particular, foreign objects damage such as hail or bird strikes present a considerable danger to aircraft. Aircraft can also be chipped by grit from the runway or damaged by tools dropped during maintenance work. With fibre-reinforced sandwich structures, such damage is very rarely visible on the outside. As yet, the operating safety is therefore ensured by extensive inspections and the corresponding design of the components.

New SHM systems allow costs, weight and maintenance to be reduced, thus enabling lightweight structures to fully exploit their potential. Self-diagnosis reduces downtimes and the reduction in weight cuts fuel consumption. Continuous monitoring of the aircraft fuselage, even in areas difficult to access, reduces inspection demands. Electrical and optical strain gauges as well as piezoelectric fibre modules and accelerometers are used to record measurements.

In integrating various sensor technologies in the production of aircraft structures, the Fraunhofer LBF works closely in an interdisciplinary manner with sensor technology companies and composite materials manufacturers. The structural part of the aircraft wing shown in Stuttgart was constructed by the Fraunhofer LBF in conjunction with the Darmstadt University of Applied Sciences, with additional support from Evonik Röhm, Saertex and Hexion.

Sensors inside the aircraft wing measure the structural loads. In addition to eight piezoelectric modules from the Fraunhofer LBF, 18 electrical and 16 optical load transducers from HBM combined with sensor film from Fujifilm Prescale were integrated in the wing during its manufacture. The loading on the upper and lower side of the wing is measured with a rate of up to 200 Hz. As soon as the data exceeds a predefined loading limit, an alarm signal is activated. Software from HBM saves and analyses all the data from the electrical and optical measurements.

Clean Sky JTI: Environmentally friendly technology for the aviation industry
The structural health monitoring (SHM) will also be further developed within the Clean Sky Joint Technology Initiative, which has the intention to make flying environmentally friendlier. The Clean Sky Joint Technology Initiative aims to considerably reduce the environmental impact caused by aviation travel while simultaneously increasing the competitiveness of the European aviation industry. With a budget of 1.6 billion euros, it is the largest European research programme focussing on this topic. Beside renowned industrial companies, the Fraunhofer Society is one of the partners in this initiative, with the Fraunhofer LBF in Darmstadt coordinating all activities conducted by the Fraunhofer Institutes.

Anke Zeidler-Finsel | Fraunhofer Gesellschaft
Further information:
http://www.lbf.fhg.de/

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>