Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent label sheds light on radioactive contamination

08.02.2013
Researchers in Japan have developed a way to detect caesium contamination on a scale of millimetres enabling the detection of small areas of radioactive contamination. The research is published in Science and Technology of Advanced Materials today.
Radioactive leaks, such as at the Fukushima Daiichi nuclear plant in Japan, contaminate the local environment. Contamination of soil and water by the radioactive form of caesium is a major problem, since it persists for a long time; levels of radioactivity reduce by half only every 30 years. Effective detection and removal of radiocaesium would accelerate recovery of the environment.

Current detection methods can only localise contamination on a scale of metres to kilometres, and they do not specifically identify caesium. Researchers in Japan, led by Katsuhiko Ariga at the National Institute for Materials Science, have now developed a way to detect caesium contamination on a scale of millimetres. The work, published in Science and Technology of Advanced Materials, used a fluorescent molecule that labels caesium so that it can be seen with the naked eye under UV light.

The reaction of the molecule with a number of alkali metals caused it to fluoresce. However, while metals such as lithium, sodium and potassium caused blue fluorescence, its reaction with caesium produced a distinctive green fluorescence. This enabled accurate identification of small contaminated areas. The exact colour of the fluorescence also related to the concentration of caesium, revealing the extent of contamination.

The simplicity and accuracy of this fluorescent probe should help with more precise removal of contaminated material. It will also help to improve our understanding of contamination around chemical and radiological hazards, allowing the construction of contamination maps and the implementation of appropriate responses.

Media contact:
Mikiko Tanifuji
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494
Journal information
Taizo Mori et al 2013 Sci. Technol. Adv. Mater. 14 015002 doi:10.1088/1468-6996/14/1/015002

Mikiko Tanifuji | Research asia research news
Further information:
http://www.nims.go.jp
http://www.researchsea.com

More articles from Materials Sciences:

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

nachricht A rhodium-based catalyst for making organosilicon using less precious metal
22.06.2017 | Tokyo Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>