Fluorescent label sheds light on radioactive contamination

Radioactive leaks, such as at the Fukushima Daiichi nuclear plant in Japan, contaminate the local environment. Contamination of soil and water by the radioactive form of caesium is a major problem, since it persists for a long time; levels of radioactivity reduce by half only every 30 years. Effective detection and removal of radiocaesium would accelerate recovery of the environment.

Current detection methods can only localise contamination on a scale of metres to kilometres, and they do not specifically identify caesium. Researchers in Japan, led by Katsuhiko Ariga at the National Institute for Materials Science, have now developed a way to detect caesium contamination on a scale of millimetres. The work, published in Science and Technology of Advanced Materials, used a fluorescent molecule that labels caesium so that it can be seen with the naked eye under UV light.

The reaction of the molecule with a number of alkali metals caused it to fluoresce. However, while metals such as lithium, sodium and potassium caused blue fluorescence, its reaction with caesium produced a distinctive green fluorescence. This enabled accurate identification of small contaminated areas. The exact colour of the fluorescence also related to the concentration of caesium, revealing the extent of contamination.

The simplicity and accuracy of this fluorescent probe should help with more precise removal of contaminated material. It will also help to improve our understanding of contamination around chemical and radiological hazards, allowing the construction of contamination maps and the implementation of appropriate responses.

Media contact:
Mikiko Tanifuji
National Institute for Materials Science, Tsukuba, Japan
Email: stam_office@nims.go.jp
Tel. +81-(0)29-859-2494
Journal information
Taizo Mori et al 2013 Sci. Technol. Adv. Mater. 14 015002 doi:10.1088/1468-6996/14/1/015002

Media Contact

Mikiko Tanifuji Research asia research news

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors