Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flow at the nanoscale: what stops a drop and keeps nanobubbles alive

12.04.2016

All of us have seen it: a raindrop running down the windowpane. It stops at a certain point, is met by a second raindrop and the two join up before continuing to run down the pane. Very small irregularities or dirt on the windowpane appear to stop the course of the raindrops. If the surface was entirely smooth and chemically clean, the raindrops would be able to flow unhindered. Surface defects such as small bumps and dimples as well as chemical contaminants stop the liquid drops.
These are everyday phenomena everyone knows and can observe with the naked eye.

However, for years, progress in science and technology has been directed towards ever more finely structured surfaces of solids which can be used for a wide variety of applications. Here the typical structure dimensions are in the micrometer or even the nanometer range (a nanometer is one-millionth of a millimeter).


Illustration of the theoretical model: A liquid front coming from the right pushes over a contaminant (top) or a bump (bottom).

Max Planck Institute for Intelligent Systems, Stuttgart, Germany

But how is the flow behavior of a drop influenced by such fine surface structures, and how is the transportation of tiny amounts of liquid on extremely narrow paths impeded by tiny surface defects along this path? Here the surface defects in question are not much larger than the molecules or atoms which form he liquid or the surface of the solid.

The influence of such small surface defects on the transportation of liquids cannot be studied with the naked eye. Even with sophisticated modern experimental methods, it is currently not possible to observe and investigate the transportation of liquids across such small surface defects. Theoretical methods and model calculations overcome this challenge.

The research department “Theory of inhomogeneous condensed matter” headed by Prof. Dr. Siegfried Dietrich at the Max Planck Institute for Intelligent Systems in Stuttgart has developed a model calculation which incorporates the relevant molecular structure on the nanometer scale. This theo-retical model makes it possible to calculate the resistance against the transportation of liquids caused by irregularities or contaminants of a few nanometers in size.

Dr. Alberto Giacomello and Dr. Lothar Schimmele along with Professor Dr. Siegfried Dietrich recently published these results in the journal “Proceedings of the National Academy of Sciences” (PNAS).

This multidisciplinary journal of international renown only publishes studies of extraordinary scien-tific importance. They also have to be of general interest for other groups of specialists, in this case for example scientists in the fields of microfluidics, nanostructure physics and surface chemistry.

For several years, Lothar Schimmele has developed the corresponding computer program. Alberto Giacomello combined it with a novel algorithm for this project. The program makes it possible to calculate how liquids behave under the influence of external forces caused for example by confining walls.

Alberto Giacomello and Lothar Schimmele chose a simple model for the issues discussed here: two smooth walls parallel to each other, forming a channel with a diameter of a few nanometers. On the lower wall of this narrow channel, the liquid encounters an obstacle such as a contaminant or an irregularity. Results obtained with this simple system can be transferred to other geometries using theoretical considerations.

“So far the scientific community has assumed that an obstacle smaller than one nanometer is too weak to stop a liquid. Our calculations refute that,” Dr. Lothar Schimmele explains.

The results of these studies can be used to explain another phenomenon as well. Tiny gas bubbles which form on surfaces, for example during catalysis or electrolysis, often have an unexpectedly long lifespan. However, these gas bubbles reduce the effectiveness of electrolysis processes and disturb them.

The pinning of a gas bubble on the surface prevents the continuous increase of pressure in the bubble, thereby stabilizing it. Pinning can be explained by the observations of the Dietrich research group: It is caused by irregularities on the surface in the range of a few nanometers.

The insights gained through this work can also be of importance for other practical applications. One example is the use of liquid bridges for the artificial assembly of nanostructures. Nanoparticles are positioned and oriented with the help of these bridges. Once again pinning on irregularities plays an important role.

The scientists have already set additional goals for themselves: They want to investigate various types of irregularities on surfaces in order to find out what respective influence the material composition or geometric shape of an irregularity in the nanometer range has on stopping a drop of liquid.

The researchers are interested in collective phenomena as well. “Next we want to investigate the influence of multiple defects which are close to each other forming a group. We are also interested in the flow behavior of liquids across obstacles in the form of surface holes, rather than the bumps studied so far,” Dr. Lothar Schimmele explains.

Weitere Informationen:

http://www.is.mpg.de/dietrich

Annette Stumpf | Max-Planck-Institut für Intelligente Systeme

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>