Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible proximity sensor creates smart surfaces

25.07.2017

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these areas are actually made up of countless microscopic carbon nanotubes which can locate humans and objects. Florian Bodny, a scientist at Fraunhofer IPA, explains: “The proximity sensor can detect anything which is electroconductive.


The proximity sensor can adapt well to large, flexible surfaces due to its elastic design.

Fraunhofer IPA, Rainer Bez

When an object approaches, the electric field changes.” This can be observed when the sensor is connected to a testing device. Once connected, if a hand or a metal object is held above it then a light will turn on. If the surface is made up of several sensor elements, it detects both the object itself as well as its location.

Manufacturing costs under one euro

Scientists at Fraunhofer IPA used a combination of silicone and CNT in their sensor. It is constructed layer by layer, so a coat of silicone is followed by a silicone-CNT hybrid. Both materials are elastic and flexible, with a high degree of environmental stability. This means that the sensor can be applied across large surface areas.

The experts decided to use screen printing for the manufacturing process. Bodny vouches for this method, saying that it is fast and can be done without any expensive or cumbersome preparations. Furthermore, he says that it is possible to print large surfaces and to manufacture the sensors in large quantities. “The sensor is easy to apply, is extremely versatile and is cheap to produce,” he explains.

Scientists at Fraunhofer IPA carried out a series of experiments to ascertain which parameters are important when it comes to detection accuracy. They discovered that the concentration of the active material had the biggest influence. The thickness of the layers was the second most important aspect, followed by the area of the sensor. Bodny explains: “To detect an object which is 8 mm away, for instance, three printed layers, a concentration of 1.5 m% and an area of 36cm² are needed.”

Seeking partners for application

The proximity sensor could be used for a variety of applications. It could conceivably be used as an artificial skin for robots. “For instance, service robots could reach out a hand if they sense a person nearby,” Bodny says.

There are plenty of application areas in the “smart home” sector too, for instance in lights or doors which activate when they detect the presence of a person. Additionally, the sensor’s elasticity makes it well-suited for accident prevention, such as in PPE clothing. The scientists are also considering its use in medical engineering for exoskeletons. “The sensor is available right now. We are looking for industry and research partners who would like to test it and develop it further,” Bodny explains.

The proximity sensor is an example of printed electronics. This sector is generally used to create smart surfaces. Given the current trend of Industry 4.0, which sees objects being fitted with smart features and communicating with others as cyberphysical systems, sensors like these will be of increasing importance. In this respect, surfaces with proximity sensors can act as a human-machine interface.

Weitere Informationen:

https://www.ipa.fraunhofer.de/en/press/2017-07-04_flexible-proximity-sensor-crea...

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

More articles from Materials Sciences:

nachricht The stacked colour sensor
16.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures
16.11.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>