Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flat boron is a superconductor

01.04.2016

Rice University scientists predict 2-D material -- no longer theoretical -- has unique properties

Rice University scientists have determined that two-dimensional boron is a natural low-temperature superconductor. In fact, it may be the only 2-D material with such potential.


Electrons with opposite momenta and spins pair up via lattice vibrations at low temperatures in two-dimensional boron and give it superconducting properties, according to new research by theoretical physicists at Rice University.

Credit: Evgeni Penev/Rice University

Rice theoretical physicist Boris Yakobson and his co-workers published their calculations that show atomically flat boron is metallic and will transmit electrons with no resistance. The work appears this month in the American Chemical Society journal Nano Letters.

The hitch, as with most superconducting materials, is that it loses its resistivity only when very cold, in this case between 10 and 20 kelvins (roughly, minus-430 degrees Fahrenheit). But for making very small superconducting circuits, it might be the only game in town.

The basic phenomenon of superconductivity has been known for more than 100 years, said Evgeni Penev, a research scientist in the Yakobson group, but had not been tested for its presence in atomically flat boron.

"It's well-known that the material is pretty light because the atomic mass is small," Penev said. "If it's metallic too, these are two major prerequisites for superconductivity. That means at low temperatures, electrons can pair up in a kind of dance in the crystal."

"Lower dimensionality is also helpful," Yakobson said. "It may be the only, or one of very few, two-dimensional metals. So there are three factors that gave the initial motivation for us to pursue the research. Then we just got more and more excited as we got into it."

Electrons with opposite momenta and spins effectively become Cooper pairs; they attract each other at low temperatures with the help of lattice vibrations, the so-called "phonons," and give the material its superconducting properties, Penev said. "Superconductivity becomes a manifestation of the macroscopic wave function that describes the whole sample. It's an amazing phenomenon," he said.

It wasn't entirely by chance that the first theoretical paper establishing conductivity in a 2-D material appeared at roughly the same time the first samples of the material were made by laboratories in the United States and China. In fact, an earlier paper by the Yakobson group had offered a road map for doing so.

That 2-D boron has now been produced is a good thing, according to Yakobson and lead authors Penev and Alex Kutana, a postdoctoral researcher at Rice. "We've been working to characterize boron for years, from cage clusters to nanotubes to planer sheets, but the fact that these papers appeared so close together means these labs can now test our theories," Yakobson said.

"In principle, this work could have been done three years ago as well," he said. "So why didn't we? Because the material remained hypothetical; okay, theoretically possible, but we didn't have a good reason to carry it too far.

"But then last fall it became clear from professional meetings and interactions that it can be made. Now those papers are published. When you think it's coming for real, the next level of exploration becomes more justifiable," Yakobson said.

Boron atoms can make more than one pattern when coming together as a 2-D material, another characteristic predicted by Yakobson and his team that has now come to fruition. These patterns, known as polymorphs, may allow researchers to tune the material's conductivity "just by picking a selective arrangement of the hexagonal holes," Penev said.

He also noted boron's qualities were hinted at when researchers discovered more than a decade ago that magnesium diborite is a high-temperature electron-phonon superconductor. "People realized a long time ago the superconductivity is due to the boron layer," Penev said. "The magnesium acts to dope the material by spilling some electrons into the boron layer. In this case, we don't need them because the 2-D boron is already metallic."

Penev suggested that isolating 2-D boron between layers of inert hexagonal boron nitride (aka "white graphene") might help stabilize its superconducting nature.

Without the availability of a block of time on several large government supercomputers, the study would have taken a lot longer, Yakobson said. "Alex did the heavy lifting on the computational work," he said. "To turn it from a lunchtime discussion into a real quantitative research result took a very big effort."

The paper is the first by Yakobson's group on the topic of superconductivity, though Penev is a published author on the subject. "I started working on superconductivity in 1993, but it was always kind of a hobby, and I hadn't done anything on the topic in 10 years," Penev said. "So this paper brings it full circle."

###

The work was supported by the Office of Naval Research and by the Department of Energy Office of Basic Energy Sciences. The researchers utilized the National Energy Research Scientific Computing Center supported by the Department of Energy Office of Science, and the U.S. Army Engineer Research and Development Supercomputing Resource Center supported by the Department of Defense.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b00070

This news release can be found online at http://news.rice.edu/2016/03/30/flat-boron-is-a-superconductor/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related Materials:

Yakobson Research Group: http://biygroup.blogs.rice.edu

George R. Brown School of Engineering: http://engr.rice.edu

Images for download:

http://news.rice.edu/files/2016/03/0402_SUPER-1-web-1ysmuqe.jpg

Electrons with opposite momenta and spins pair up via lattice vibrations at low temperatures in two-dimensional boron and give it superconducting properties, according to new research by theoretical physicists at Rice University. (Credit: Evgeni Penev/Rice University)

http://news.rice.edu/files/2016/03/0402_SUPER-2-web-1sjicvt.jpg

Rice University scientists have determined that two-dimensional boron is a natural low-temperature superconductor. It may be the only 2-D material with such potential. From left: Evgeni Penev, Alex Kutana and Boris Yakobson. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/AboutRiceUniversity.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

Further reports about: Electrons Energy Flat phenomenon superconducting properties superconductivity

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>