Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flashes of brilliance

26.11.2013
Rice U. researchers discover roots of superfluorescent bursts from quantum wells

Spontaneous bursts of light from a solid block illuminate the unusual way interacting quantum particles behave when they are driven far from equilibrium. The discovery by Rice University scientists of a way to trigger these flashes may lead to new telecommunications equipment and other devices that transmit signals at picosecond speeds.


Rice University scientists detected superfluorescent bursts from a solid-state stack of quantum wells without a magnetic field. The discovery could lead to ultrahigh-speed optoelectronic devices for telecommunications. (Credit: Kono Laboratory/Rice University)

The Rice University lab of Junichiro Kono found the flashes, which last trillionths of a second, change color as they pulse from within a solid-state block. The researchers said the phenomenon can be understood as a combination of two previously known many-body concepts: superfluorescence, as seen in atomic and molecular systems, and Fermi-edge singularities, a process known to occur in metals.

The team previously reported the first observation of superfluorescence in a solid-state system by strongly exciting semiconductor quantum wells in high magnetic fields. The new process – Fermi-edge superfluorescence – does not require them to use powerful magnets. That opens up the possibility of making compact semiconductor devices to produce picosecond pulses of light.

The results by Rice, Florida State University and Texas A&M University researchers were reported this month in Nature’s online journal, Scientific Reports.

The semiconducting quantum wells at the center of the experiment contain particles – in this case, a dense collection of electrons and holes – and confine them to wiggle only within the two dimensions allowed by the tiny, stacked wells, where they are subject to strong Coulomb interactions.

Previous experiments by Rice and Florida State showed the ability to create superfluorescent bursts from a stack of quantum wells excited by a laser in extreme cold and under the influence of a strong magnetic field, both of which further quenched the electrons’ motions and made an atom-like system. The basic features were essentially the same as those known for superfluorescence in atomic systems.

That was a first, but mysteries remained, especially in results obtained at low or zero magnetic fields. Kono said the team didn’t understand at the time why the wavelength of the burst changed over its 100-picosecond span. Now they do. The team included co-lead authors Timothy Noe, a Rice postdoctoral researcher, and Ji-Hee Kim, a former Rice postdoctoral researcher and now a research professor at Sungkyunkwan University in the Republic of Korea.

In the new results, the researchers not only described the mechanism by which the light’s wavelength evolves during the event (as a Fermi-edge singularity), but also managed to record it without having to travel to the National High Magnetic Field Laboratory at Florida State.

Kono said superfluorescence is a well-known many-body, or cooperative, phenomenon in atomic physics. Many-body theory gives physicists a way to understand how large numbers of interacting particles like molecules, atoms and electrons behave collectively. Superfluorescence is one example of how atoms under tight controls collaborate when triggered by an external source of energy. However, electrons and holes in semiconductors are charged particles, so they interact more strongly than atoms or molecules do.

The quantum well, as before, consisted of stacked blocks of an indium gallium arsenide compound separated by barriers of gallium arsenide. “It’s a unique, solid-state environment where many-body effects completely dominate the dynamics of the system,” Kono said.

“When a strong magnetic field is applied, electrons and holes are fully quantized – that is, constrained in their range of motion — just like electrons in atoms,” he said. “So the essential physics in the presence of a high magnetic field is quite similar to that in atomic gases. But as we decrease and eventually eliminate the magnetic field, we’re entering a regime atomic physics cannot access, where continua of electronic states, or bands, exist.”

The Kono team’s goal was to keep the particles as dense as possible at liquid helium temperatures (about -450 degrees Fahrenheit) so that their quantum states were obvious, or “quantum degenerate,” which happens when the so-called Fermi energy is much larger than the thermal energy. When pumped by a strong laser, these quantum degenerate particles gathered energy and released it as light at the Fermi edge: the energy level of the most energetic particles in the system. As the electrons and holes combined to release photons, the edge shifted to lower-energy particles and triggered more reactions until the sequence played out.

The researchers found the emitted light shifted toward the higher red wavelengths as the burst progressed.

“What’s cool about this is that we have a material, we excite it with a 150-femtosecond pulse, wait for 100 picoseconds, and all of a sudden a picosecond pulse comes out. It’s a long delay,” Kono said. “This may lead to a new method for producing picosecond pulses from a solid. We saw something essentially the same previously, but it required high magnetic fields, so there was no practical application. But now the present work demonstrates that we don’t need a magnet.”

Co-authors are Stephen McGill, an associate scholar and scientist with the National High Magnetic Field Laboratory at Florida State University, and researchers Yongrui Wang and Aleksander Wójcik and Professor Alexey Belyanin of Texas A&M University.

The National Science Foundation and the state of Florida supported the research.

Read the abstract at http://www.nature.com/srep/2013/131121/srep03283/full/srep03283.html

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/AboutRiceU.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>