Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D


Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications for additive manufacturing.

Credit: ORNL

The first-ever 3D printed excavator will include a cab designed by a University of Illinois at Urbana-Champaign student engineering team and printed at DOE’s Manufacturing Demonstration Facility at ORNL using carbon fiber-reinforced ABS plastic.

The excavator will be 3D printed using machines at the Department of Energy’s Manufacturing Demonstration Facility at ORNL to create and assemble three components: the cab where the operator sits, the stick (a large hydraulically articulated arm) and a heat exchanger. The excavator’s stick will be fabricated using the newly installed Wolf System, a machine that uses a freeform technique in printing large-scale metal components. The heat exchanger will be printed on a Concept Laser machine that produces metal parts through a powder-bed-based laser melting process.

When 3D printing the excavator’s stick and heat exchanger, the team will further develop processes to improve material performance and printability and also validate models that will show how they can adapt to reduce residual stress and distortion.

“The beauty of a project of this size and scope is that it brings together many intelligent people to work on a number of challenges while accomplishing a common goal,” said Lonnie Love, who’s leading the 3D printed excavator project with ORNL’s Manufacturing Systems Research group. He expects the excavator to be printed, assembled and ready to be unveiled in only nine months.

3D printing an excavator for the first time is a learning experience for both seasoned researchers and the next generation of engineers.

A student engineering team from the University of Illinois at Urbana-Champaign won a design competition and recently visited the MDF to watch their cab design take shape on the Big Area Additive Manufacturing machine – the same system co-developed by ORNL and Cincinnati Incorporated that produced a replica Shelby Cobra sports car using carbon fiber-reinforced acrylonitrile butadiene styrene, or ABS, plastic.

“While hundreds of people, many of whom are students, visit the MDF each year, this is the first student group to watch their design 3D printed on one of our large-scale machines,” Love said. Additionally, Georgia Institute of Technology student Clayton Greer worked on the excavator’s stick as an ORNL intern.

“We’re also exposing them to the possibilities that additive manufacturing is affording industry that can help companies from so many different areas whether it’s automotive, construction or other applications yet to be discovered,” he added.

The completed excavator project, known as Project AME (Additive Manufactured Excavator), will be on display at IFPE and CONEXPO-CON/AGG in Las Vegas in March 2017. Plans are in the works to 3D print another excavator cab during a live demonstration at the event.

While 3D printing excavators, or any other construction vehicles, may not become common practice among manufacturers, Love said using AM to print low-volume, high-complexity components could benefit the construction industry by reducing production time and overall cost.

“Additive manufacturing can be used to print components on demand, which could potentially eliminate the need for mass storage, organization and transportation,” Love said.

The project was funded by DOE’s Office of Energy Efficiency and Renewable Energy – Advanced Manufacturing Office. AMO supports applied research, development and demonstration of new materials and processes for energy efficiency in manufacturing as well as platform technologies for the manufacturing of clean energy products. Visit ORNL’s Innovations in Manufacturing website for more information.

Key partners of Project AME include the Association of Equipment Manufacturers, the National Fluid Power Association, the Center for Compact and Efficient Fluid Power and the National Science Foundation.

UT-Battelle manages ORNL for the DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit


Image #1:

Caption: The first-ever 3D printed excavator will include a cab designed by a University of Illinois at Urbana-Champaign student engineering team and printed at DOE’s Manufacturing Demonstration Facility at ORNL using carbon fiber-reinforced ABS plastic.

Image #2:

Caption: ORNL’s Lonnie Love, far right, explains the potential impact of additive manufacturing research and development to a student engineering team from the University of Illinois at Urbana-Champaign who toured DOE’s Manufacturing Demonstration Facility at ORNL.

Image #3:

Caption: ORNL’s Lonnie Love hosted a University of Illinois at Urbana-Champaign student engineering team who watched their award-winning excavator cab design being printed on the Big Area Additive Manufacturing system at DOE’s Manufacturing Demonstration Facility at ORNL.


Sara Shoemaker
Oak Ridge National Laboratory
(865) 576-9219;

Sara Shoemaker | newswise
Further information:

Further reports about: ABS Energy Fluid Manufacturing ORNL acrylonitrile butadiene styrene construction plastic

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>