Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings on Spider Silk

15.11.2013
Spider silk fibers are very light, extremely tough and highly stretchable. This makes them interest-ing for industrial applications. Researchers at the Biocenter of the University of Würzburg have now discovered new details about the proteins of which spider silk consists.

Spider webs are made from a fascinating material. The eight-legged critters produce it in the silk glands on their abdomen from special proteins, which are spun into long threads. This can be done extremely fast: For a quick descent, for instance, they extrude the silk threads with a speed of up to one meter per second.


A garden spider pulls silk threads with its legs from the spinnerets on the abdomen.
(Photo: Manfred Schwedler)


The rapid production of silk threads in spiders involves unusual electrostatic interactions between the proteins.

(Graphics: Hannes Neuweiler)

However, the silk-spinning speed of the spiders is not the only impressive thing – the intrinsic properties of the material are no less astonishing: "Taking into account its lightness in a weight-for-weight comparison, a spider's dragline or the framework thread of a web is tougher than steel or even than the high-tech fiber Kevlar," explains Hannes Neuweiler at the Biocenter of the University of Würzburg.

Spider silk: many possible applications

It's no wonder that scientists and engineers try to emulate the production of spider silk technologi-cally in research laboratories and industrial facilities. There are many conceivable applications, rang-ing from novel fibers for high-performing textiles to innovative materials for vehicle construction or medical technology. Spider silk has the additional advantage of being biologically compatible with the human body and it is completely biodegradable.

"From a technological perspective, the production of spider silk works quite well already. So far, however, the outstanding mechanical properties of natural spider silk have not been attained in this way," says biotechnologist Neuweiler. And he knows a reason for this: We still do not understand the molecular mechanisms in the natural spinning process well enough to imitate them perfectly.

The dynamics of the spinning process shown

What the Würzburg researcher finds particularly fascinating about the spinning process is the speed with which individual protein molecules in the spider arrange themselves into long threads. He examined this aspect in greater detail – after all, his research team specializes in the visualization of protein dynamics. This research requires the application of special optical methods.

Neuweiler and his associates have now analyzed a certain section of a silk protein from the nursery web spider Euprosthenops australis. "This section is very interesting, because it connects the termi-nal areas of the proteins that link to form silk threads," says Neuweiler.

The presence of salt does not affect the speed of the protein linkage

The result is published in the journal "Nature Communications": The observed section links the proteins 1000 times faster than is usual in common protein-protein interactions. In addition, there is another striking feature: The presence of salts does not slow down the process, which is generally the case in such fast protein interactions. The researchers explain this phenomenon with an electrical particularity of the examined protein section, namely its peculiar dipole-dipole interactions.

"With the silk production of spiders, evolution seems to have found a way of greatly accelerating the association of proteins even in the presence of physiological concentrations of salt," explains Neuweiler. This is necessary because the silk gland contains several varieties of salts at the end of the spinning duct, where the silk protein fibers are generated, which salts play some role in the spinning process. Their precise function, however, is still poorly understood.

Further exploration of the phenomenon

The Würzburg biotechnologists are now scrutinizing this "salt resistance" further. Next, the researchers are going to determine whether this phenomenon also occurs with other spider silk proteins in other types of silk glands, as spiders have up to seven such silk glands in their abdomen, with which they can produce different kinds of silk.

Publication

The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening, Nature Communications, 2013, November 15, DOI 10.1038/ncomms3815

Contact person

Dr. Hannes Neuweiler, Department for Biotechnology and Biophysics, Biocenter at the University of Würzburg, T +49 (0)931 31-83872, hannes.neuweiler@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>