Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Findings on Spider Silk

Spider silk fibers are very light, extremely tough and highly stretchable. This makes them interest-ing for industrial applications. Researchers at the Biocenter of the University of Würzburg have now discovered new details about the proteins of which spider silk consists.

Spider webs are made from a fascinating material. The eight-legged critters produce it in the silk glands on their abdomen from special proteins, which are spun into long threads. This can be done extremely fast: For a quick descent, for instance, they extrude the silk threads with a speed of up to one meter per second.

A garden spider pulls silk threads with its legs from the spinnerets on the abdomen.
(Photo: Manfred Schwedler)

The rapid production of silk threads in spiders involves unusual electrostatic interactions between the proteins.

(Graphics: Hannes Neuweiler)

However, the silk-spinning speed of the spiders is not the only impressive thing – the intrinsic properties of the material are no less astonishing: "Taking into account its lightness in a weight-for-weight comparison, a spider's dragline or the framework thread of a web is tougher than steel or even than the high-tech fiber Kevlar," explains Hannes Neuweiler at the Biocenter of the University of Würzburg.

Spider silk: many possible applications

It's no wonder that scientists and engineers try to emulate the production of spider silk technologi-cally in research laboratories and industrial facilities. There are many conceivable applications, rang-ing from novel fibers for high-performing textiles to innovative materials for vehicle construction or medical technology. Spider silk has the additional advantage of being biologically compatible with the human body and it is completely biodegradable.

"From a technological perspective, the production of spider silk works quite well already. So far, however, the outstanding mechanical properties of natural spider silk have not been attained in this way," says biotechnologist Neuweiler. And he knows a reason for this: We still do not understand the molecular mechanisms in the natural spinning process well enough to imitate them perfectly.

The dynamics of the spinning process shown

What the Würzburg researcher finds particularly fascinating about the spinning process is the speed with which individual protein molecules in the spider arrange themselves into long threads. He examined this aspect in greater detail – after all, his research team specializes in the visualization of protein dynamics. This research requires the application of special optical methods.

Neuweiler and his associates have now analyzed a certain section of a silk protein from the nursery web spider Euprosthenops australis. "This section is very interesting, because it connects the termi-nal areas of the proteins that link to form silk threads," says Neuweiler.

The presence of salt does not affect the speed of the protein linkage

The result is published in the journal "Nature Communications": The observed section links the proteins 1000 times faster than is usual in common protein-protein interactions. In addition, there is another striking feature: The presence of salts does not slow down the process, which is generally the case in such fast protein interactions. The researchers explain this phenomenon with an electrical particularity of the examined protein section, namely its peculiar dipole-dipole interactions.

"With the silk production of spiders, evolution seems to have found a way of greatly accelerating the association of proteins even in the presence of physiological concentrations of salt," explains Neuweiler. This is necessary because the silk gland contains several varieties of salts at the end of the spinning duct, where the silk protein fibers are generated, which salts play some role in the spinning process. Their precise function, however, is still poorly understood.

Further exploration of the phenomenon

The Würzburg biotechnologists are now scrutinizing this "salt resistance" further. Next, the researchers are going to determine whether this phenomenon also occurs with other spider silk proteins in other types of silk glands, as spiders have up to seven such silk glands in their abdomen, with which they can produce different kinds of silk.


The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening, Nature Communications, 2013, November 15, DOI 10.1038/ncomms3815

Contact person

Dr. Hannes Neuweiler, Department for Biotechnology and Biophysics, Biocenter at the University of Würzburg, T +49 (0)931 31-83872,

Robert Emmerich | Uni Würzburg
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>