Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Film coatings made from whey

02.01.2012
Convenience foods are growing in popularity, and the food they contain is usually protected by films based on petrochemicals. Now researchers have not only developed a biomaterial from whey protein, they have also come up with a commercially viable method of producing multifunctional films on an industrial scale.

From pre-packed Camembert to shrink-wrapped meat loaf – choosing the right packaging is a key issue in the food industry. Companies need to protect food products from oxygen, moisture and chemical and biological contamination while keeping them fresh for as long as possible. Transparent multilayer films, in which each layer offers specific benefits, are frequently used to protect food from contamination. To minimize the amount of oxygen that penetrates the packaging, companies typically use expensive, petrochemical-based polymers such as ethylene vinyl alcohol (EVOH) copolymers as barrier materials.

The German Society for Packaging Market Research (Gesellschaft für Verpackungsmarktforschung mbH) estimates that more than 640 square kilometers of composite materials employing EVOH as an oxygen barrier layer will be produced and used in Germany in 2014 – enough to completely cover Lake Constance. There is therefore a strong impetus to develop a sustainable packaging material which is both economical to produce and environmentally friendly. Researchers working on the EU’s “Wheylayer” project have been using whey protein instead of petrochemical-based polymers.

The natural ingredients in the whey extend the shelf life of food products, and the whey protein layer is biodegradable. The results of the research are promising. “We’ve managed to develop a whey protein formulation that can be used as the raw material for a film barrier layer. And we have also developed an economically viable process which can be used to produce the multifunctional films on an industrial scale,” says Markus Schmid from the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising.

But how is it even possible to make a barrier layer from whey? The researchers from the IVV began by purifying sweet whey and sour whey and producing high purity whey protein isolates. They tested a range of different modification methods in order to obtain suitable proteins with outstanding film-forming properties. To enable these proteins to withstand the mechanical loads involved, they were subsequently mixed with differing concentrations of various softeners and other additives, which were also biobased. “All these additives are approved substances,” says Schmid. The search for the perfect formula was a tricky process for the Freising-based researchers. For example, use too many softeners and the barrier effect against water vapor and oxygen decreases, which means that the food is no longer adequately protected. In the end, the researchers not only found the optimum formula, but also came up with a suitable, economically viable and industrial-scale method of applying whey protein coatings to plastic films and combining these with other films using different technologies.

The overall process produces multilayer structures with barrier functions which can be used to produce flexible, transparent food packaging materials. “Our work at the IVV to manufacture a multilayer film of this kind using a roll-to-roll method is a world’s first,” Schmid notes. Companies that choose to make the switch to whey proteins in the future will only need to make minor modifications to their plants. The researchers have already applied for a patent on their new technology.

The IVV researchers are so convinced of whey proteins’ future potential as an alternative packaging material that they have initiated their own project which goes one step further. According to a survey carried out by the German Society for Packaging Market Research, there is not only an increasing demand for composite films, but also an increasing need for thermoformable composites. Growing demand for prepared products in trays is expected to increase the volume of these composites from 76,497 tons in 2009 to 93,158 tons in 2014. The researchers are working hard to replace EVOH in thermoform composites with a barrier layer based on whey protein. This additional application for whey protein would likewise conserve resources and reduce the emission of carbon dioxide into the atmosphere.

Dr. Klaus Noller | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/film-coatings-whey.html

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>