Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Film coatings made from whey

02.01.2012
Convenience foods are growing in popularity, and the food they contain is usually protected by films based on petrochemicals. Now researchers have not only developed a biomaterial from whey protein, they have also come up with a commercially viable method of producing multifunctional films on an industrial scale.

From pre-packed Camembert to shrink-wrapped meat loaf – choosing the right packaging is a key issue in the food industry. Companies need to protect food products from oxygen, moisture and chemical and biological contamination while keeping them fresh for as long as possible. Transparent multilayer films, in which each layer offers specific benefits, are frequently used to protect food from contamination. To minimize the amount of oxygen that penetrates the packaging, companies typically use expensive, petrochemical-based polymers such as ethylene vinyl alcohol (EVOH) copolymers as barrier materials.

The German Society for Packaging Market Research (Gesellschaft für Verpackungsmarktforschung mbH) estimates that more than 640 square kilometers of composite materials employing EVOH as an oxygen barrier layer will be produced and used in Germany in 2014 – enough to completely cover Lake Constance. There is therefore a strong impetus to develop a sustainable packaging material which is both economical to produce and environmentally friendly. Researchers working on the EU’s “Wheylayer” project have been using whey protein instead of petrochemical-based polymers.

The natural ingredients in the whey extend the shelf life of food products, and the whey protein layer is biodegradable. The results of the research are promising. “We’ve managed to develop a whey protein formulation that can be used as the raw material for a film barrier layer. And we have also developed an economically viable process which can be used to produce the multifunctional films on an industrial scale,” says Markus Schmid from the Fraunhofer Institute for Process Engineering and Packaging IVV in Freising.

But how is it even possible to make a barrier layer from whey? The researchers from the IVV began by purifying sweet whey and sour whey and producing high purity whey protein isolates. They tested a range of different modification methods in order to obtain suitable proteins with outstanding film-forming properties. To enable these proteins to withstand the mechanical loads involved, they were subsequently mixed with differing concentrations of various softeners and other additives, which were also biobased. “All these additives are approved substances,” says Schmid. The search for the perfect formula was a tricky process for the Freising-based researchers. For example, use too many softeners and the barrier effect against water vapor and oxygen decreases, which means that the food is no longer adequately protected. In the end, the researchers not only found the optimum formula, but also came up with a suitable, economically viable and industrial-scale method of applying whey protein coatings to plastic films and combining these with other films using different technologies.

The overall process produces multilayer structures with barrier functions which can be used to produce flexible, transparent food packaging materials. “Our work at the IVV to manufacture a multilayer film of this kind using a roll-to-roll method is a world’s first,” Schmid notes. Companies that choose to make the switch to whey proteins in the future will only need to make minor modifications to their plants. The researchers have already applied for a patent on their new technology.

The IVV researchers are so convinced of whey proteins’ future potential as an alternative packaging material that they have initiated their own project which goes one step further. According to a survey carried out by the German Society for Packaging Market Research, there is not only an increasing demand for composite films, but also an increasing need for thermoformable composites. Growing demand for prepared products in trays is expected to increase the volume of these composites from 76,497 tons in 2009 to 93,158 tons in 2014. The researchers are working hard to replace EVOH in thermoform composites with a barrier layer based on whey protein. This additional application for whey protein would likewise conserve resources and reduce the emission of carbon dioxide into the atmosphere.

Dr. Klaus Noller | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/film-coatings-whey.html

More articles from Materials Sciences:

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>