Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber optics: One and only

19.08.2011
The transmission quality of an optical fiber can now be tested without the need to take measurements at both ends

Light traveling in an optical fiber loses power over distance. A number of factors are responsible for this power loss, but one that is particularly important at high data rates is the loss that occurs due to changes in light polarization.

Hui Dong at the A*STAR Institute for Infocomm Research and co-workers1 have developed and tested a method of determining this polarization-dependent loss (PDL) in an optical fiber cable by taking measurements from just one end of the fiber. The new technique avoids the difficulty of having to arrange and coordinate access to both ends of a fiber optic cable, which may be tens of kilometers apart.

In fiber optic networks, PDL predominantly occurs not in the fiber itself but in the couplers and filters used to regulate light in the fiber, and can have a significant impact on signal quality and network performance. Until now the measurement of PDL in cables has required an optical source attached to one end transmitting to a receiver at the other. A technique requiring access to only one end, however, was proposed theoretically by Italian researchers, but had yet to be verified experimentally.

The proposed technique requires the fiber optic cable to be birefringent at the end at which measurements are to be taken— that is, the cable must include imperfections that interact in different ways with the two perpendicular components of light polarization. This polarization-dependent interaction causes the two polarization modes to travel at different speeds, splitting the light beam into two.

The technique then proposes estimating the PDL from the maximum loss encountered in a round-trip along the cable. This can be achieved by measuring light backscatter as photons of light emitted in four different polarization states bounce back from interacting with the molecular structure of the cable. Over a distance of ten kilometers, measurements taken with an experimental setup built by the researchers showed good agreement with measurement made using standard techniques with a light source and receiver at either end.

“We want to continue the experimental work on our PDL measurement in fiber links,” says Dong. “The PDL in a fiber link is a function of fiber length. Using our new technique, we should be able to measure the relationship between PDL and fiber length.” As PDL varies with environmental conditions such as temperature or stress on the cable, the new technique could also be used to sense these changes by detecting PDL variations.

References

Dong, H., Shum, P., Gong, Y. & Sun, Q. Single-ended measurement of polarization-dependent loss in an optical fiber link. IEEE Photonics Technology Letters 23, 185–187 (2011).

Eugene Low | Research asia research news
Further information:
http://www.i2r.a-star.edu.sg/
http://www.researchsea.com

Further reports about: Fiber Optic Cables PDL fiber optic cable optical fiber optical source

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>