Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feel-good glass for windows

03.07.2012
Daylight acts on our body clock and stimulates the brain. Fraunhofer researchers have made use of this knowledge and worked with industry partners to develop a coating for panes of glass that lets through more light. Above all, it promotes the passage through the glass of those wavelengths of light that govern our hormonal balance.

Most people prefer to live in homes that are airy and flooded with light. Nobody likes to spend much time in a dark and dingy room. That’s no surprise, since daylight gives us energy and has a major impact on our sense of wellbeing. It is a real mood lifter.

But not everyone is lucky enough to live in a generously glazed home, and office spaces – where we spend many hours of each day – are often not exactly bright and breezy. Modern heat-insulating, sun-protection glazing for offices and housing doesn’t make things any better, since it isn’t optimized to allow the light that governs our hormonal balance to pass through: instead, a distinctly noticeable percentage of incident sunlight in this effective part of the spectrum is reflected away.

Anti-reflective glass that is more transmissive overall to daylight is reserved for certain special applications, such as in glass covers for photovoltaic modules or in glazing for shop windows. The aim with this kind of glass is to avoid nuisance reflections and to achieve maximum light transmission at the peak emission wavelength of sunlight. This is the wavelength at which the human retina is also most sensitive to light.

“However, our biorhythms are not affected by the wavelengths that brighten a room the most, but rather by blue light,” explains graduate engineer Walther Glaubitt, a researcher at the Fraunhofer Institute for Silicate Research ISC in Würzburg. That is why he and his team have developed glass that is designed to be particularly transmissive to light in the blue part of the spectrum. The secret is a special, long-lasting and barely perceptible inorganic coating that is only 0.1 micrometers thick. “Nobody’s ever made glass like this before. It makes you feel as if the window is permanently open,” says Glaubitt. One reason the glass gives this impression is that it exhibits maximum transmission at wavelengths between 450 and 500 nanometers – which is exactly where the effects of blue light are at their strongest.

Lack of light gives rise to sleep disorders

Why is it that the blue part of the light spectrum has such an impact on our sense of wellbeing? “There is a nerve connecting the human retina to the hypothalamus, which is the control center for the autonomic nervous system,” explains Glaubitt’s team colleague Dr. Jörn Probst. Special receptors sit at the end of the nerve connection which are sensitive to blue light, converting it into light-and-dark signals and sending these to the area of the brain that functions as our biological clock. There, one of the things these nerve impulses do is regulate melatonin levels. A lack of light leads to high levels of melatonin, which can result in problems sleeping and concentrating, as well as depression and other psychological impairments. Seasonal affective disorder, also known as winter depression, is one possible outcome of unusually high melatonin levels. “The coating we’ve developed helps people to feel they can perform better and makes it less likely they will fall ill,” says Probst.

Industrial partner Centrosolar Glas GmbH & Co. KG is responsible for applying the coating to the glass while UNIGLAS GmbH & Co. KG, the company that brought the product to market maturity, handles the remaining finishing work as well as sales. It is about to launch a triple-glazing product featuring this innovative glass, for which a patent is pending, under the name UNIGLAS | VITAL® feel-good glass. Fitting triple glazing to a room does not make it seem appreciably darker, but it does affect the light that enters the room in a way that is detrimental to our biorhythms. This is especially true for people who have little opportunity to spend time outdoors and are obliged to spend most of their time in rooms with only small windows. “Thanks to the special ISC coating, this is not the case with our UNIGLAS | VITAL® feel-good glass. Instead, the light quality achieved is very close to that of single glazing,” says Thomas Fiedler, the Technical Director of UNIGLAS. Its transmissivity to light is increased across the entire range from 380 to 580 nanometers, which is to say in the portion of the spectrum that is responsible for promoting wellbeing. At 460 nanometers, the light transmissivity of UNIGLAS | VITAL® is 79 percent. Comparable triple glazing only lets through 66 percent of light at this wavelength. Meanwhile, the coating has no impact on the window’s heat-insulating properties.

But the ISC researchers haven’t quite reached their ultimate goal: “Up to now we’ve only applied our special coating to the side of the glass facing into the cavity between panes,” says Glaubitt. “In future we will also be coating the glazing’s exposed surfaces – in other words, the outside and the inside of the window. That will allow us to achieve around 95 percent light transmissivity at 460 nanometers.”

Walther Glaubitt | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/feel-good-glass-for-windows.html

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>