Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


FAU researchers investigate how light behaves in curved space


To investigate the influence of gravity on the propagation of light, researchers usually have to examine astronomical length scales and huge masses. However, physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Friedrich Schiller University Jena have shown that there is another way. In a recent issue of the journal Nature Photonics they find the answers to astronomical questions in the laboratory, shifting the focus to a previously underappreciated material property - surface curvature.*

According to Einstein's general theory of relativity, gravity can be described as the curvature of four-dimensional spacetime. In this curved space, celestial bodies and light move along geodesics, the shortest paths between two points, which often look anything but straight when viewed from the outside.

In this image, a laser beam in an experiment propagates along the two-dimensional surface of a glass object shaped like an hourglass, curling once around the middle of the object. This is an example of an object with negative surface curvature (like a saddle, for example), in contrast to an object with positive surface curvature, such as a sphere.

Credit: Vincent Schultheiß

The team of researchers led by Prof. Dr. Ulf Peschel from Friedrich Schiller University Jena used a special trick to examine the propagation of light in such curved spaces in the laboratory. Instead of changing all four dimensions of spacetime, they reduced the problem to two dimensions and studied the propagation of light along curved surfaces. However, not all curved surfaces are the same.

'For example, while you can easily unfold a cylinder or a cone into a flat sheet of paper, it is impossible to lay the surface of a sphere out flat on a table without tearing or at least distorting it,' says Vincent Schultheiß, a doctoral candidate at FAU and lead author of the study. 'A well known example of this is world maps that always show the surface in a distorted way. The curvature of the surface of a sphere is an intrinsic property that can't be changed and has an effect on geometry and physics inside this two-dimensional surface.'

The researchers examined the effects of this intrinsic curvature of space on the propagation of light in their experiment. To do so they captured light in a small area close to the surface of a specially made object and forced it to follow the course of the surface. As the light propagated it behaved in the same way that it does when deflected by huge masses.

By changing the curvature of the surface it is possible to control the propagation of light. Conversely, it is also possible to learn about the curvature of a surface itself by analysing the propagation of light. When transferred to astronomical observations, this means that light that reaches us from far away stars carries valuable information about the space that it has travelled through.

In their work the researchers studied intensity interferometry, pioneered by the English physicists Robert Hanbury Brown and Richard Twiss, which is used to determine the size of stars that are close to the sun. In this measurement technique, two telescopes are set up some distance apart and focused on the star that is to be examined.

The fluctuations in light intensity measured by the two telescopes are then compared. Fluctuations in intensity are a result of the interference of light emitted separately from the surface of the star - visible as a pattern of light dots in the images produced - and allow conclusions to be drawn about the size of the object that is observed.

As paths of light in curved space tend to converge or diverge much more frequently than in flat space, the size of the dots changes depending on the curvature. The researchers were able to show that knowing the curvature is crucial for interpreting results and that experiments that use interferometry are suitable for measuring the general curvature of the universe more exactly.

Whether the results of their research will lead to a better understanding of the universe is still written in the stars. 'The main goal of our research is to transfer findings based on the general theory of relativity to materials science by carefully modelling the surfaces of objects,' Professor Peschel says. Although these two fields seem rather unrelated at first glance, there are some important connections.

'From a manufacturing point of view, flat designs are often much easier to achieve. However, curved surfaces have a potential that has not yet been exploited and could be used to control light paths in optical systems, for example. Creating local variations in the surface curvature can often have the same effect as changing the volume material itself. This could allow the number of steps required and materials used when manufacturing integrated optical circuits or micro-optic components to be reduced.'


The study was carried out at FAU's Cluster of Excellence 'Engineering of Advanced Materials' (EAM) where researchers from a wide range of subjects are working on developing new materials.

Media Contact

Vincent Schultheiß

Vincent Schultheiß | EurekAlert!

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>