Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FAU researchers investigate how light behaves in curved space

18.01.2016

To investigate the influence of gravity on the propagation of light, researchers usually have to examine astronomical length scales and huge masses. However, physicists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Friedrich Schiller University Jena have shown that there is another way. In a recent issue of the journal Nature Photonics they find the answers to astronomical questions in the laboratory, shifting the focus to a previously underappreciated material property - surface curvature.*

According to Einstein's general theory of relativity, gravity can be described as the curvature of four-dimensional spacetime. In this curved space, celestial bodies and light move along geodesics, the shortest paths between two points, which often look anything but straight when viewed from the outside.


In this image, a laser beam in an experiment propagates along the two-dimensional surface of a glass object shaped like an hourglass, curling once around the middle of the object. This is an example of an object with negative surface curvature (like a saddle, for example), in contrast to an object with positive surface curvature, such as a sphere.

Credit: Vincent Schultheiß

The team of researchers led by Prof. Dr. Ulf Peschel from Friedrich Schiller University Jena used a special trick to examine the propagation of light in such curved spaces in the laboratory. Instead of changing all four dimensions of spacetime, they reduced the problem to two dimensions and studied the propagation of light along curved surfaces. However, not all curved surfaces are the same.

'For example, while you can easily unfold a cylinder or a cone into a flat sheet of paper, it is impossible to lay the surface of a sphere out flat on a table without tearing or at least distorting it,' says Vincent Schultheiß, a doctoral candidate at FAU and lead author of the study. 'A well known example of this is world maps that always show the surface in a distorted way. The curvature of the surface of a sphere is an intrinsic property that can't be changed and has an effect on geometry and physics inside this two-dimensional surface.'

The researchers examined the effects of this intrinsic curvature of space on the propagation of light in their experiment. To do so they captured light in a small area close to the surface of a specially made object and forced it to follow the course of the surface. As the light propagated it behaved in the same way that it does when deflected by huge masses.

By changing the curvature of the surface it is possible to control the propagation of light. Conversely, it is also possible to learn about the curvature of a surface itself by analysing the propagation of light. When transferred to astronomical observations, this means that light that reaches us from far away stars carries valuable information about the space that it has travelled through.

In their work the researchers studied intensity interferometry, pioneered by the English physicists Robert Hanbury Brown and Richard Twiss, which is used to determine the size of stars that are close to the sun. In this measurement technique, two telescopes are set up some distance apart and focused on the star that is to be examined.

The fluctuations in light intensity measured by the two telescopes are then compared. Fluctuations in intensity are a result of the interference of light emitted separately from the surface of the star - visible as a pattern of light dots in the images produced - and allow conclusions to be drawn about the size of the object that is observed.

As paths of light in curved space tend to converge or diverge much more frequently than in flat space, the size of the dots changes depending on the curvature. The researchers were able to show that knowing the curvature is crucial for interpreting results and that experiments that use interferometry are suitable for measuring the general curvature of the universe more exactly.

Whether the results of their research will lead to a better understanding of the universe is still written in the stars. 'The main goal of our research is to transfer findings based on the general theory of relativity to materials science by carefully modelling the surfaces of objects,' Professor Peschel says. Although these two fields seem rather unrelated at first glance, there are some important connections.

'From a manufacturing point of view, flat designs are often much easier to achieve. However, curved surfaces have a potential that has not yet been exploited and could be used to control light paths in optical systems, for example. Creating local variations in the surface curvature can often have the same effect as changing the volume material itself. This could allow the number of steps required and materials used when manufacturing integrated optical circuits or micro-optic components to be reduced.'

###

The study was carried out at FAU's Cluster of Excellence 'Engineering of Advanced Materials' (EAM) where researchers from a wide range of subjects are working on developing new materials.

Media Contact

Vincent Schultheiß
vincent.schultheiss@fau.de
49-913-185-20343

http://www.uni-erlangen.de 

Vincent Schultheiß | EurekAlert!

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>