Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster, cheaper gas and liquid separation using custom designed and built mesoscopic structures

25.06.2012
Building larger porous coordination polymer architectures

In what may prove to be a significant boon for industry, separating mixtures of liquids or gasses has just become considerably easier.


A composite image showing (left) an alumina-based honeycomb lattice with approximately one micron diameter cells, from which (right) an equivalent porous coordination polymer (PCP) architecture is derived using "reverse fossilization." Credit: Kyoto University iCeMS

Using a new process they describe as "reverse fossilization," scientists at Kyoto University's WPI Institute for Integrated Cell-Material Sciences (iCeMS) have succeeded in creating custom designed porous substances capable of low cost, high efficiency separation.

The process takes place in the mesoscopic realm, between the nano- and the macroscopic, beginning with the creation of a shaped mineral template, in this case using alumina, or aluminum oxide. This is then transformed into an equivalently shaped lattice consisting entirely of porous coordination polymer (PCP) crystals, which are themselves hybrid assemblies of organic and mineral elements.

"After creating the alumina lattice," explains team leader Assoc. Prof. Shuhei Furukawa, "we transformed it, molecule for molecule, from a metal structure into a largely non-metallic one. Hence the term 'reverse fossilization,' taking something inorganic and making it organic, all while preserving its shape and form."

After succeeding in creating both 2-dimensional and 3-dimensional test architectures using this technique, the researchers proceeded to replicate an alumina aerogel with a highly open, sponge-like macro-structure, in order to test its utility in separating water and ethanol.

"Water/ethanol separation has not been commonly possible using existing porous materials," elaborates Dr. Julien Reboul. "The PCP-based structures we created, however, combine the intrinsic nano-level adsorptive properties of the PCPs themselves with the meso- and macroscopic properties of the template aerogels, greatly increasing separation efficiency and capacity."

Lab head and iCeMS Deputy Director Prof. Susumu Kitagawa sees the team's achievement as a significant advance. "To date, PCPs have been shown on their own to possess highly useful properties including storage, catalysis, and sensing, but the very utility of the size of their nanoscale pores has limited their applicability to high throughput industrial processes. Using reverse fossilization to create architectures including larger, mesoscale pores now allows us to begin considering the design of such applications."

The article, "Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication" by Julien Reboul, Shuhei Furukawa, Nao Horike, Manuel Tsotsalas, Kenji Hirai, Hiromitsu Uehara, Mio Kondo, Nicolas Louvain, Osami Sakata, and Susumu Kitagawa is to be published online in the June 24, 2012 issue of Nature Materials.

About WPI-iCeMS

The WPI Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University in Japan aims to advance the integration of the cell and material sciences -- both traditionally strong fields for the university -- in a uniquely innovative global research environment. Part of the Japanese science ministry's WPI initiative, the iCeMS combines the biosciences, chemistry, materials science, and physics to capture the potential power of stem cells (e.g., ES/iPS cells) and of mesoscopic sciences (e.g., porous coordination polymers). Such developments hold the promise of significant advances in medicine, pharmaceutical studies, the environment, and industry.

David Kornhauser | EurekAlert!
Further information:
http://www.kyoto-u.ac.jp

More articles from Materials Sciences:

nachricht Scientist invents way to trigger artificial photosynthesis to clean air
26.04.2017 | University of Central Florida

nachricht Researchers invent process to make sustainable rubber, plastics
25.04.2017 | University of Delaware

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>