Fast, cheap, and accurate: Detecting CO2 with a fluorescent twist

Overcoming these deficiencies with a unique approach, a team based at Kyoto University has designed an inexpensive new material capable of quick and accurate detection of a specific gas under a wide variety of circumstances. Moreover, in addition to being reusable, the compound gives off variable degrees of visible light in correspondence with different gas concentrations, providing for development of easy to use monitoring devices.

The findings, published in a recent issue of Nature Materials, describe the use of a flexible crystalline material (porous coordination polymer, or PCP) that transforms according to changes in the environment. When infused with a fluorescent reporter molecule (distyrylbenzene, or DSB), the composite becomes sensitive specifically to carbon dioxide gas, glowing with varying intensity based on changing concentrations of the gas. Lead author for the paper was Dr. Nobuhiro Yanai of the university's Graduate School of Engineering.

“The real test for us was to see whether the composite could differentiate between carbon dioxide and acetylene, which have similar physiochemical properties,” explains Assoc. Prof. Takashi Uemura, also of the Graduate School of Engineering. “Our findings clearly show that this PCP-DSB combination reacts very differently to the two gases, making accurate CO2 detection possible in a wide variety of applications.”

In its natural state, DSB is a long, flat molecule, which emits a blue light. When adsorbed by the PCP framework, DSB molecules twist, causing the entire PCP structure to also become skewed. In this condition, the glow of DSB diminishes significantly.

“On this occasion we observed that the presence of CO2 causes the DSB molecules to revert to their flat, brightly fluorescent form, while also returning the PCP grid to its usual state,” adds Professor and deputy director Susumu Kitagawa of the university's Institute for Integrated Cell-Material Sciences (iCeMS). “And importantly, these steps can be reversed without causing any significant changes to the composite, making possible the development of a wide variety of specific, inexpensive, reusable gas detectors.”

The article, “Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer” by Nobuhiro Yanai, Koji Kitayama, Yuh Hijikata, Hiroshi Sato, Ryotaro Matsuda, Yoshiki Kubota, Masaki Takata, Motohiro Mizuno, Takashi Uemura, and Susumu Kitagawa was published online in the September 4, 2011 issue of Nature Materials.

Acknowledgements: This work was supported by the Murata Science Foundation, ERATO-JST, a Grant-in-Aid for Young Scientists (A), and a Grant-in-Aid for Scientific Research on Innovative Area “Emergence in Chemistry” from MEXT. The synchrotron radiation experiments were carried out at BL02B2 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal no. 2009B1320).

About the iCeMS:

The Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University in Japan aims to advance the integration of cell and material sciences — both traditionally strong fields for the university — by creating a uniquely innovative global research environment. The iCeMS integrates the biosciences, chemistry, materials science, and physics to capture the potential power of stem cells (e.g., ES/iPS cells) and of mesoscopic sciences (e.g., porous coordination polymers). Such developments hold the promise of significant advances in medicine, pharmaceutical studies, the environment, and industry. Please see http://www.icems.kyoto-u.ac.jp for further details.

Media Contact

David Kornhauser EurekAlert!

More Information:

http://www.kyoto-u.ac.jp

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors