Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast, cheap, and accurate: Detecting CO2 with a fluorescent twist

05.09.2011
Detecting specific gases in the air is possible using a number of different existing technologies, but typically all of these suffer from one or more drawbacks including high energy cost, large size, slow detection speed, and sensitivity to humidity.

Overcoming these deficiencies with a unique approach, a team based at Kyoto University has designed an inexpensive new material capable of quick and accurate detection of a specific gas under a wide variety of circumstances. Moreover, in addition to being reusable, the compound gives off variable degrees of visible light in correspondence with different gas concentrations, providing for development of easy to use monitoring devices.

The findings, published in a recent issue of Nature Materials, describe the use of a flexible crystalline material (porous coordination polymer, or PCP) that transforms according to changes in the environment. When infused with a fluorescent reporter molecule (distyrylbenzene, or DSB), the composite becomes sensitive specifically to carbon dioxide gas, glowing with varying intensity based on changing concentrations of the gas. Lead author for the paper was Dr. Nobuhiro Yanai of the university's Graduate School of Engineering.

"The real test for us was to see whether the composite could differentiate between carbon dioxide and acetylene, which have similar physiochemical properties," explains Assoc. Prof. Takashi Uemura, also of the Graduate School of Engineering. "Our findings clearly show that this PCP-DSB combination reacts very differently to the two gases, making accurate CO2 detection possible in a wide variety of applications."

In its natural state, DSB is a long, flat molecule, which emits a blue light. When adsorbed by the PCP framework, DSB molecules twist, causing the entire PCP structure to also become skewed. In this condition, the glow of DSB diminishes significantly.

"On this occasion we observed that the presence of CO2 causes the DSB molecules to revert to their flat, brightly fluorescent form, while also returning the PCP grid to its usual state," adds Professor and deputy director Susumu Kitagawa of the university's Institute for Integrated Cell-Material Sciences (iCeMS). "And importantly, these steps can be reversed without causing any significant changes to the composite, making possible the development of a wide variety of specific, inexpensive, reusable gas detectors."

The article, "Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer" by Nobuhiro Yanai, Koji Kitayama, Yuh Hijikata, Hiroshi Sato, Ryotaro Matsuda, Yoshiki Kubota, Masaki Takata, Motohiro Mizuno, Takashi Uemura, and Susumu Kitagawa was published online in the September 4, 2011 issue of Nature Materials.

Acknowledgements: This work was supported by the Murata Science Foundation, ERATO-JST, a Grant-in-Aid for Young Scientists (A), and a Grant-in-Aid for Scientific Research on Innovative Area "Emergence in Chemistry" from MEXT. The synchrotron radiation experiments were carried out at BL02B2 in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal no. 2009B1320).

About the iCeMS:

The Institute for Integrated Cell-Material Sciences (iCeMS) at Kyoto University in Japan aims to advance the integration of cell and material sciences -- both traditionally strong fields for the university -- by creating a uniquely innovative global research environment. The iCeMS integrates the biosciences, chemistry, materials science, and physics to capture the potential power of stem cells (e.g., ES/iPS cells) and of mesoscopic sciences (e.g., porous coordination polymers). Such developments hold the promise of significant advances in medicine, pharmaceutical studies, the environment, and industry. Please see http://www.icems.kyoto-u.ac.jp for further details.

David Kornhauser | EurekAlert!
Further information:
http://www.kyoto-u.ac.jp

More articles from Materials Sciences:

nachricht Researchers devise microreactor to study formation of methane hydrate
23.08.2017 | NYU Tandon School of Engineering

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>