Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The fantastic armor of a wonder snail

20.01.2010
Exoskeleton of newly discovered gastropod mollusk could improve load-bearing materials

Deep within the Kairei Indian hydrothermal vent field, two-and-one-half miles below the central Indian Ocean, scientists have discovered a gastropod mollusk, whose armor could improve load-bearing and protective materials in everything from aircraft hulls to sports equipment.

Researchers at the National Science Foundation-supported Materials Research Science and Engineering Center at the Massachusetts Institute of Technology are studying the mollusk's physical and mechanical properties. A report, "Protection mechanisms of the iron-plated armor of a deep sea hydrothermal vent gastropod," appears this week in the Proceedings of the National Academy of Sciences.

The so-called "scaly-foot gastropod," has a unique tri-layered shell that may hold insights for future mechanical design principles. Specifically, it has a highly calcified inner layer, a thick organic middle layer. But, it's the extraordinary outer layer fused with granular iron sulfide that excites researchers.

The Kairei Indian vent field is a series of deep gashes in the planet's surface along a volcanic mountain chain below the Indian Ocean. There, researchers on an expedition discovered the never before seen snail in 1999.

"Hydrothermal vent fluids possess high concentration of sulfides and metals, but this mollusk is unique in that it incorporates materials plentiful to vent field into its shell structure," said MIT project leader Christine Ortiz at MIT's Department of Materials Science and Engineering. "We were interested in looking at the structure and properties of the individual layers and seeing how they behave mechanically," she said noting that the mollusk's organic inner layer is also interesting.

In particular researchers set out to discover what advantages the structure holds for protection against penetrating attacks from predators. Understanding this can give them new ideas for materials that may be used for cars, trucks and military applications.

To test the shell's properties, researchers performed experiments that simulated generic predatory attacks using both computer models and indentation testing. The indentation testing involved hitting the top of shells with the sharp tip of a probe to measure the shell's hardness and stiffness.

A number of potential predators were found in the same region as the scaly-foot gastropod. One predator, the cone snail, uses a harpoon-like tooth to attempt penetration of before injecting it with paralyzing venom. Additionally, sea-faring crabs are known to grab gastropods within their claws and attempt to puncture their shells and/or squeeze them sometimes for days until the mollusks' shells break.

The testing led to a "realization that each layer of the (mollusk's) exoskeleton is responsible for distinct and multifunctional roles in mechanical protection," Ortiz and her colleagues write in the report. The testing reveals that the shell is "advantageous for penetration resistance, energy dissipation, mitigation of fracture and crack arrest, reduction of back deflections, and resistance to bending and tensile loads."

Our study suggests that the scaly-foot gastropod undergoes very different deformation and protection mechanisms compared to other gastropods," said Ortiz. "It is very efficient in protection, more so than the typical mollusk."

Researchers from Raytheon, Inc., Marlboro, Massachusetts and Asylum Research, Santa Barbara, Calif. assisted with this project.

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Materials Sciences:

nachricht Porous crystalline materials: TU Graz researcher shows method for controlled growth
07.12.2016 | Technische Universität Graz

nachricht Simple processing technique could cut cost of organic PV and wearable electronics
06.12.2016 | Georgia Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>