Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The fantastic armor of a wonder snail

Exoskeleton of newly discovered gastropod mollusk could improve load-bearing materials

Deep within the Kairei Indian hydrothermal vent field, two-and-one-half miles below the central Indian Ocean, scientists have discovered a gastropod mollusk, whose armor could improve load-bearing and protective materials in everything from aircraft hulls to sports equipment.

Researchers at the National Science Foundation-supported Materials Research Science and Engineering Center at the Massachusetts Institute of Technology are studying the mollusk's physical and mechanical properties. A report, "Protection mechanisms of the iron-plated armor of a deep sea hydrothermal vent gastropod," appears this week in the Proceedings of the National Academy of Sciences.

The so-called "scaly-foot gastropod," has a unique tri-layered shell that may hold insights for future mechanical design principles. Specifically, it has a highly calcified inner layer, a thick organic middle layer. But, it's the extraordinary outer layer fused with granular iron sulfide that excites researchers.

The Kairei Indian vent field is a series of deep gashes in the planet's surface along a volcanic mountain chain below the Indian Ocean. There, researchers on an expedition discovered the never before seen snail in 1999.

"Hydrothermal vent fluids possess high concentration of sulfides and metals, but this mollusk is unique in that it incorporates materials plentiful to vent field into its shell structure," said MIT project leader Christine Ortiz at MIT's Department of Materials Science and Engineering. "We were interested in looking at the structure and properties of the individual layers and seeing how they behave mechanically," she said noting that the mollusk's organic inner layer is also interesting.

In particular researchers set out to discover what advantages the structure holds for protection against penetrating attacks from predators. Understanding this can give them new ideas for materials that may be used for cars, trucks and military applications.

To test the shell's properties, researchers performed experiments that simulated generic predatory attacks using both computer models and indentation testing. The indentation testing involved hitting the top of shells with the sharp tip of a probe to measure the shell's hardness and stiffness.

A number of potential predators were found in the same region as the scaly-foot gastropod. One predator, the cone snail, uses a harpoon-like tooth to attempt penetration of before injecting it with paralyzing venom. Additionally, sea-faring crabs are known to grab gastropods within their claws and attempt to puncture their shells and/or squeeze them sometimes for days until the mollusks' shells break.

The testing led to a "realization that each layer of the (mollusk's) exoskeleton is responsible for distinct and multifunctional roles in mechanical protection," Ortiz and her colleagues write in the report. The testing reveals that the shell is "advantageous for penetration resistance, energy dissipation, mitigation of fracture and crack arrest, reduction of back deflections, and resistance to bending and tensile loads."

Our study suggests that the scaly-foot gastropod undergoes very different deformation and protection mechanisms compared to other gastropods," said Ortiz. "It is very efficient in protection, more so than the typical mollusk."

Researchers from Raytheon, Inc., Marlboro, Massachusetts and Asylum Research, Santa Barbara, Calif. assisted with this project.

Bobbie Mixon | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>