Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The fantastic armor of a wonder snail

Exoskeleton of newly discovered gastropod mollusk could improve load-bearing materials

Deep within the Kairei Indian hydrothermal vent field, two-and-one-half miles below the central Indian Ocean, scientists have discovered a gastropod mollusk, whose armor could improve load-bearing and protective materials in everything from aircraft hulls to sports equipment.

Researchers at the National Science Foundation-supported Materials Research Science and Engineering Center at the Massachusetts Institute of Technology are studying the mollusk's physical and mechanical properties. A report, "Protection mechanisms of the iron-plated armor of a deep sea hydrothermal vent gastropod," appears this week in the Proceedings of the National Academy of Sciences.

The so-called "scaly-foot gastropod," has a unique tri-layered shell that may hold insights for future mechanical design principles. Specifically, it has a highly calcified inner layer, a thick organic middle layer. But, it's the extraordinary outer layer fused with granular iron sulfide that excites researchers.

The Kairei Indian vent field is a series of deep gashes in the planet's surface along a volcanic mountain chain below the Indian Ocean. There, researchers on an expedition discovered the never before seen snail in 1999.

"Hydrothermal vent fluids possess high concentration of sulfides and metals, but this mollusk is unique in that it incorporates materials plentiful to vent field into its shell structure," said MIT project leader Christine Ortiz at MIT's Department of Materials Science and Engineering. "We were interested in looking at the structure and properties of the individual layers and seeing how they behave mechanically," she said noting that the mollusk's organic inner layer is also interesting.

In particular researchers set out to discover what advantages the structure holds for protection against penetrating attacks from predators. Understanding this can give them new ideas for materials that may be used for cars, trucks and military applications.

To test the shell's properties, researchers performed experiments that simulated generic predatory attacks using both computer models and indentation testing. The indentation testing involved hitting the top of shells with the sharp tip of a probe to measure the shell's hardness and stiffness.

A number of potential predators were found in the same region as the scaly-foot gastropod. One predator, the cone snail, uses a harpoon-like tooth to attempt penetration of before injecting it with paralyzing venom. Additionally, sea-faring crabs are known to grab gastropods within their claws and attempt to puncture their shells and/or squeeze them sometimes for days until the mollusks' shells break.

The testing led to a "realization that each layer of the (mollusk's) exoskeleton is responsible for distinct and multifunctional roles in mechanical protection," Ortiz and her colleagues write in the report. The testing reveals that the shell is "advantageous for penetration resistance, energy dissipation, mitigation of fracture and crack arrest, reduction of back deflections, and resistance to bending and tensile loads."

Our study suggests that the scaly-foot gastropod undergoes very different deformation and protection mechanisms compared to other gastropods," said Ortiz. "It is very efficient in protection, more so than the typical mollusk."

Researchers from Raytheon, Inc., Marlboro, Massachusetts and Asylum Research, Santa Barbara, Calif. assisted with this project.

Bobbie Mixon | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>