Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exotic materials will change optics, Duke researchers say

19.03.2012
Duke University engineers believe that continued advances in creating ever-more exotic and sophisticated man-made materials will greatly improve their ability to control light at will.

The burgeoning use of metamaterials in the field of optics does not rely on the limited set of materials found in nature, but rather man-made constructs that can be designed to control light's many properties. This control is gained by use of metamaterials, which are not so much single substances but entire man-made structures that can be engineered to exhibit properties not readily found in nature.


This is a portion of a cell making up metamaterial. Credit: Stephane Larouche

In their latest series of experiments, the Duke team demonstrated that a metamaterial construct they developed could create holograms -- like the images seen on credit or bank cards -- in the infrared range of light, something that had not been done before.

The Duke engineers point out that while this advance was achieved in a specific wavelength of light, the principles used to design and create the metamaterial in their experiments should apply in controlling light in most frequencies.

"In the past, our ability to create optical devices has been limited by the properties of natural materials," said Stéphane Larouche, research scientist in electrical and computer engineering at Duke's Pratt School of Engineering. "Now, with the advent of metamaterials, we can almost do whatever we want to do with light.

"In addition to holograms, the approach we developed easily extends to a broad range of optical devices," Larouche said. "If realized, full three-dimensional capabilities open the door to new devices combining a wide range of properties. Our experiments provide a glimpse of the opportunities available for advanced optical devices based on metamaterials that can support quite complex material properties."

The results of Larouche's experiments, which were conducted in the laboratory of senior researcher David R. Smith, a professor of electrical and computer engineering, appeared in an advanced online publication of the journal Nature Materials. The research was supported by the Army Research Office's Multidisciplinary University Research Initiative (MURI).

The metamaterial device fashioned by the Duke team doesn't look anything like a lens, though its ability to control the direction of rays passing through it surpasses that of a conventional lens. While traditional lenses are made of clear substances -- like glass or plastic -- with highly polished surfaces, the new device looks more like a miniature set of tan Venetian blinds.

These metamaterials are constructed on thin slabs of the same material used to make computer chips. Metal elements are etched upon these slabs to form a lattice-like pattern. The metal elements can be arranged in limitless ways, depending on the properties desired.

"There is unquestionable potential for far more advanced and functional optical devices if greater control can be obtained over the underlying materials," Larouche said. "The ability to design and fabricate the components of these metamaterial constructs has reached the point where we can now build even more sophisticated designs.

"We believe that just about any optical device can be made more efficient and effective using these new approaches," he said.

The other members of the team, all from Duke, were Yu-Ju Tsai, Talmage Tyler and Nan M. Jokerst.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>