Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Evidence to Aid Search for Charge “Stripes” in Superconductors

11.09.2013
Findings identify signature that will help scientists investigate and understand materials that carry current with no resistance

A team of scientists from Columbia University’s School of Engineering and Applied Science and the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have identified a series of clues that particular arrangements of electrical charges known as “stripes” may play a role in superconductivity—the ability of some materials to carry electric current with no energy loss.

But uncovering the detailed relationship between these stripe patterns and the appearance or disappearance of superconductivity is extremely difficult, particularly because the stripes that may accompany superconductivity are very likely moving, or fluctuating.

As a step toward solving this problem, the Brookhaven team used an indirect method to detect fluctuating stripes of charge density in a material closely related to a superconductor. The research, described in a paper published in Physical Review Letters August 30, 2013, identifies a key signature to look for in superconductors as scientists seek ways to better understand and engineer these materials for future energy-saving applications.

“The charge stripes are hard to see even when they are frozen,” said Simon Billinge, who holds a joint appointment between Columbia Engineering and Brookhaven Lab, and leads the collaboration that performed this study. “But they are impossible to see when they are moving. Tantalizingly, they always tend to show up in the vicinity of superconductivity, but we don’t know what their role is in this phenomenon.”

“In previous experiments, we’ve seen evidence of fluctuating ‘magnetic spin’ stripes—patterns of how adjacent atoms’ spin directions are arranged—that are compatible with superconductivity,” added Brookhaven physicist John Tranquada, a senior collaborator on the research team. “Now we’re trying to look at the arrangements of charge density, to see if there are alternating stripes of densely and more loosely packed charges. The charge part is harder to see.”

To get an idea of the difficulty of tracking moving stripes, think of the cars in a supermarket parking lot. The lines delineating the parking spots are like the positions of atoms making up a crystal, and the cars are like the electrons. If there’s a pattern to the arrangement—say alternating colors of cars in adjacent spots—it would be easy to spot in a single snapshot. But if you took a single photo (with a very long exposure) over the course of a busy shopping day as cars moved into and out of spots, all you’d see is a blur. You wouldn’t be able to tell if they continued to park in alternating order, if the details of the parking pattern were changing, or even whether there was a pattern at all.

A series of individual snapshots might make the details more discernable. But in the case of analyzing materials science samples, the “snapshots” are often made with very intense x-rays or neutron beams. And access to beam time at these imaging facilities is limited, and expensive. “You can’t throw enough ‘light’ on the problem to see it,” Tranquada said.

Instead, the scientists tried a completely different approach. Rather than looking directly at the stripes, they looked for a telltale signal that indicates the presence of the stripes by association, but in a different measurement that can be done quickly and with much less precious beam time. They started these experiments on a material they knew had a static striped pattern below a certain temperature to make sure that the signal was evident in this new measurement. They then studied what happened as the temperature rose to see whether the stripes would either disappear or persist but start to move.

The scientists ground up crystals of the test material into a fine powder and placed samples of it in line with a beam of neutrons at the Los Alamos Neutron Scattering Center at Los Alamos National Laboratory. Similar to the way light reflecting off an object enters your eyes to create an image, the neutron beams diffracted by the crystals’ atoms yield information about the positions of the atoms. The scientists used that information to infer the material’s electronic structure, and repeated the experiment at gradually warmer temperatures.

“We’re looking at the average crystal structure, the height-to-width aspect ratio of that structure, and how different the positions of the atoms are from that average,” said Milinda Abeykoon, lead author on the paper.

In the static striped arrangement, the atoms are displaced from the average in a regular way—like parking spots that are alternatingly wider or narrower than average. Such atomic displacements force the electrons to follow a stripe-ordered arrangement—the way smaller cars would fill the narrow parking spots alternating with wider SUVs.

With increasing temperature, the scientists found that while the aspect ratio of the crystal structure changed, the displacements from average structure persisted, leading them to conclude by inference that the striped pattern of charge density also remained, even though it was no longer static.

“This is the first powder diffraction scattering evidence for fluctuating charge stripes above the temperature where we see static order,” said co-author Simon Billinge, referring to the new measurement. Billinge is professor of materials science and applied physics and applied mathematics at Columbia Engineering, and a scientist at Brookhaven Lab.

“One of the most critical aspects of this experiment is that we had lots of different data points, lots of temperatures—so you can catch small deviations,” said co-author Emil Bozin of Brookhaven. He also noted how improvements in detector technology made it possible to collect a lot of data within a fixed amount of time. “Ten years ago we would have needed a couple of weeks of beam time to do this experiment; we collected all our data in just a few days.”

The next step: Return to searching for stripes in superconductors. “This model system teaches us what diffraction-scattering signature to look for in copper-based superconductors to see if these fluctuations exist,” Bozin said.

That search should lead to better understanding of the role of stripes in superconductivity, and possibly to new approaches to engineer advanced superconductors for energy applications.

Additional collaborators on this study are Wei-Guo Yin, Genda Gu, and John Hill of Brookhaven.

This research was funded by the DOE Office of Science.

Holly Evarts | Newswise
Further information:
http://www.columbia.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>