Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European Research Alliance for the Simplified Production of Organic Solar Cells

09.11.2010
A new laser system is being developed to increase the effectivity of organic solar cells. A consortium under the leadership of the Laser Zentrum Hannover e.V. (LZH) is working on a tunable infrared laser system for the selective processing of organic layers in opto-electronical components.

A tunable infrared laser system for the selective processing of organic layers in opto-electronical components is the goal of the new research project IMPROV, which started in September, 2010. The EU has provided approximately 2.4 million Euros support from the 7th Framework Programme for the project, which will run until 2013. The Laser Zentrum Hannover e.V. (LZH) is coordinator of the project consortium, with seven partners from science and industry.

Organic photovoltaic solar cells (OSC) are made of thin layers of different photo-active polymer films. In order to produce a functional component, these layers must be, among other things, selectively structured. The UV lasers presently used for this process are not precise enough, which often leads to a 20% loss of the active area. With a new laser process – resonant infrared ablation, or RIA for short – this production step can be significantly improved. Due to the different absorption bands of each individual polymer film, RIA can be used for selective cutting, structuring or material removal within the whole layer system. In order to achieve this, a short pulsed laser in the infrared wavelength is used, which can be tuned exactly to the best suitable maximum absorption of the layers to be processed.

This is where the EU project IMPROV „Integrated Mid-infrared high Power source for Resonant ablation of Organic based photovoltaic devices“ comes in, in which a widely tunable, infrared short pulsed laser in the wavelength spectrum between 3 and 10 m is being developed. In order to achieve this, frequency conversion of a 2° µm system in an innovative, non-linear crystal (orientation-patterned gallium arsenide) is necessary.

The market potential for plastic micro-processing applications is enormous. The planned laser system could greatly simplify production process and significantly decrease area losses, especially for organic photovoltaics, (OPV), but also for organic light emitting diodes (OLED) and organic thin-film transistors (OTFT).

Dr. Dieter Wandt, head of the Ultrafast Photonics Group of the LZH, is the IMPROV coordinator. In this project, his group is responsible for developing a completely fiber-based, mode-coupled, ultra-short pulsed thulium fiber laser with tunable output radiation in the wavelength range of 2 µm. Additionally, the typical repetition rate of 40 to 60 MHz must be reduced to 1 MHz. The other partners from Belgium, Denmark and France will amplify the laser output in further thulium-doted fibers, and then convert the laser radiation to the infrared spectral range in optical parameter generators/amplifiers based on GaAs crystals

Dieter Wandt is conscious of with the difficulty facing the LZH. "There is hardly any research on 2µm thulium-based ultra-short pulse fiber lasers, and commercial optical components are nearly non-existent. Also, due to the wavelength range, there are no laser viewers." Nevertheless, the physicist is confident, since the LZH has already gathered experience with this kind of oscillator. Also, the LZH can make some of the fiber-based key components such as pump-light couplers, outcouplers, and filters themselves.

Project partners in IMPROV are, apart from the German firms BATOP und Heliatek, the Interuniversitair MicroeIectronica Centrum VZW (IMEC), as well as Multitel ASBL, NKT Photonics and Thales. Together they form the complete process chain, from development to industrial exploitation. Experiments using the laser system for the production of organic solar cells will be carried with the help of the the Heliatek GmbH in Dresden. Interest in the compact IR high-powered laser has also been shown by the plastic processing industry, where the excimer laser is usually used.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover
Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Materials Sciences:

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

nachricht Electrode materials from the microwave oven
19.10.2017 | Technical University of Munich (TUM)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>