Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European material researchers present new materials and offer a look inside matter

02.09.2013
Professor Frank Mücklich of Saarland University is the scientific director of the conference.

When the wing of an aircraft "feels" a threatening load or metal foams become as lightweight and solid as our bones, you know materials scientists had their fingers in the pie. They search for perfect models in nature in order to give materials new capabilities. With the help of microscopy and tomography they constantly develop more precise analysis methods to look deep inside materials.


The Atom Probe Tomography makes it possible to look into the very heart of materials and determine the spatial positioning of atoms.


Oliver Dietze

They can thus better understand their structure in order to develop customised materials for the industrial, medical and energy sectors. Scientists will discuss the latest trends from September 8 to 13 at the largest European conference on materials research in Seville. Professor Frank Mücklich of Saarland University is the scientific director of the conference.

About 70 per cent of all German exports in the global market rely solely on the use of innovative materials. This is what a study by the German Academy of Science and Engineering has shown. "Materials research is of enormous importance for European competitiveness", says Frank Mücklich, Functional Materials Professor at Saarland University. He is this year’s scientific director for Europe’s largest conference on materials research, Euromat, taking place in Seville. Some 2500 scientists from all over Europe, USA, Asia, Latin America and Australia will be showcasing their latest research.

Materials research today covers a wide range of applications. The automotive industry, for example, requires strong yet light materials for car bodies and engines. They are also interested in new materials for sensors and controllers, especially for high-end automobiles. "Electromobility, however, requires materials that can store energy or ensure a stable power distribution with minimum losses. Medical technology in turn needs tiny sensors that can supply their own electricity, for example, through small temperature differences", explains Mücklich.

The Saarbrücken professor identifies several trends that scientists all over Europe are involved in. "Until very recently, materials were increasingly complex and made of a combination of many raw materials. Yet these are becoming more and more scarce, some very expensive, so we now focus on solutions that can be implemented with few materials. These can exhibit very different properties thanks to tailored microstructures. One example is carbon-based materials such as nanotubes, which are extremely strong from a mechanical point of view, but also offer a high electrical conductivity", explains Frank Mücklich. Many material researchers also turn to models from nature that over the course of evolution have developed effective systems, often with very few chemical elements.

The scientist sees another trend in the development of intelligent autonomous systems which supply themselves with energy. Such systems, for example, can "feel" supported loads and send correction signals to the system. They are used in so-called "domotics" for home energy management and monitoring. Materials research has received a big boost in recent years primarily due to new analytical methods. "We can now accurately analyse all materials not only chemically, but also illustrate the lattice structure of the crystals and show which atoms are present at which point in the material. These nanostructures can be simulated and modelled in 2D and 3D", explains Professor Mücklich. These findings allow for a first-ever complete understanding of existing materials. This helps to improve conventional materials and to develop new ones, where properties can be combined that were previously incompatible.

Materials Science and Engineering at the Saarland University campus with its about 300 scientists is one of five nationwide leading locations in this area. The current 13 professorships at the University are closely linked with the researchers at the Leibniz Institute for New Materials and the Fraunhofer Institute for Nondestructive Testing. Several Saarbrücken scientists will present their latest research findings in early September at the biggest European materials research meeting, in Seville.

Questions go to:
Prof. Dr. Frank Mücklich
Chair for functional materials at Saarland Universität
Steinbeis Research Center: Material Engineering Center Saarland (MECS)
Tel. +49 681/302-70500
Mail: muecke@matsci.uni-sb.de
Note to radio journalists: You can make telephone interviews in studio quality with scientists from Saarland University through a broadcast codec (IP connection with direct selection or through the ARD link 106813020001). For interview requests, please contact the press office (+49 681/302-3610).

Friederike Meyer zu Tittingdorf | idw
Further information:
http://euromat2013.fems.eu/
http://www.uni-saarland.de/pressefotos

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>