Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European material researchers present new materials and offer a look inside matter

02.09.2013
Professor Frank Mücklich of Saarland University is the scientific director of the conference.

When the wing of an aircraft "feels" a threatening load or metal foams become as lightweight and solid as our bones, you know materials scientists had their fingers in the pie. They search for perfect models in nature in order to give materials new capabilities. With the help of microscopy and tomography they constantly develop more precise analysis methods to look deep inside materials.


The Atom Probe Tomography makes it possible to look into the very heart of materials and determine the spatial positioning of atoms.


Oliver Dietze

They can thus better understand their structure in order to develop customised materials for the industrial, medical and energy sectors. Scientists will discuss the latest trends from September 8 to 13 at the largest European conference on materials research in Seville. Professor Frank Mücklich of Saarland University is the scientific director of the conference.

About 70 per cent of all German exports in the global market rely solely on the use of innovative materials. This is what a study by the German Academy of Science and Engineering has shown. "Materials research is of enormous importance for European competitiveness", says Frank Mücklich, Functional Materials Professor at Saarland University. He is this year’s scientific director for Europe’s largest conference on materials research, Euromat, taking place in Seville. Some 2500 scientists from all over Europe, USA, Asia, Latin America and Australia will be showcasing their latest research.

Materials research today covers a wide range of applications. The automotive industry, for example, requires strong yet light materials for car bodies and engines. They are also interested in new materials for sensors and controllers, especially for high-end automobiles. "Electromobility, however, requires materials that can store energy or ensure a stable power distribution with minimum losses. Medical technology in turn needs tiny sensors that can supply their own electricity, for example, through small temperature differences", explains Mücklich.

The Saarbrücken professor identifies several trends that scientists all over Europe are involved in. "Until very recently, materials were increasingly complex and made of a combination of many raw materials. Yet these are becoming more and more scarce, some very expensive, so we now focus on solutions that can be implemented with few materials. These can exhibit very different properties thanks to tailored microstructures. One example is carbon-based materials such as nanotubes, which are extremely strong from a mechanical point of view, but also offer a high electrical conductivity", explains Frank Mücklich. Many material researchers also turn to models from nature that over the course of evolution have developed effective systems, often with very few chemical elements.

The scientist sees another trend in the development of intelligent autonomous systems which supply themselves with energy. Such systems, for example, can "feel" supported loads and send correction signals to the system. They are used in so-called "domotics" for home energy management and monitoring. Materials research has received a big boost in recent years primarily due to new analytical methods. "We can now accurately analyse all materials not only chemically, but also illustrate the lattice structure of the crystals and show which atoms are present at which point in the material. These nanostructures can be simulated and modelled in 2D and 3D", explains Professor Mücklich. These findings allow for a first-ever complete understanding of existing materials. This helps to improve conventional materials and to develop new ones, where properties can be combined that were previously incompatible.

Materials Science and Engineering at the Saarland University campus with its about 300 scientists is one of five nationwide leading locations in this area. The current 13 professorships at the University are closely linked with the researchers at the Leibniz Institute for New Materials and the Fraunhofer Institute for Nondestructive Testing. Several Saarbrücken scientists will present their latest research findings in early September at the biggest European materials research meeting, in Seville.

Questions go to:
Prof. Dr. Frank Mücklich
Chair for functional materials at Saarland Universität
Steinbeis Research Center: Material Engineering Center Saarland (MECS)
Tel. +49 681/302-70500
Mail: muecke@matsci.uni-sb.de
Note to radio journalists: You can make telephone interviews in studio quality with scientists from Saarland University through a broadcast codec (IP connection with direct selection or through the ARD link 106813020001). For interview requests, please contact the press office (+49 681/302-3610).

Friederike Meyer zu Tittingdorf | idw
Further information:
http://euromat2013.fems.eu/
http://www.uni-saarland.de/pressefotos

More articles from Materials Sciences:

nachricht Mat4Rail: EU Research Project on the Railway of the Future
23.02.2018 | Universität Bremen

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>