Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

European material researchers present new materials and offer a look inside matter

02.09.2013
Professor Frank Mücklich of Saarland University is the scientific director of the conference.

When the wing of an aircraft "feels" a threatening load or metal foams become as lightweight and solid as our bones, you know materials scientists had their fingers in the pie. They search for perfect models in nature in order to give materials new capabilities. With the help of microscopy and tomography they constantly develop more precise analysis methods to look deep inside materials.


The Atom Probe Tomography makes it possible to look into the very heart of materials and determine the spatial positioning of atoms.


Oliver Dietze

They can thus better understand their structure in order to develop customised materials for the industrial, medical and energy sectors. Scientists will discuss the latest trends from September 8 to 13 at the largest European conference on materials research in Seville. Professor Frank Mücklich of Saarland University is the scientific director of the conference.

About 70 per cent of all German exports in the global market rely solely on the use of innovative materials. This is what a study by the German Academy of Science and Engineering has shown. "Materials research is of enormous importance for European competitiveness", says Frank Mücklich, Functional Materials Professor at Saarland University. He is this year’s scientific director for Europe’s largest conference on materials research, Euromat, taking place in Seville. Some 2500 scientists from all over Europe, USA, Asia, Latin America and Australia will be showcasing their latest research.

Materials research today covers a wide range of applications. The automotive industry, for example, requires strong yet light materials for car bodies and engines. They are also interested in new materials for sensors and controllers, especially for high-end automobiles. "Electromobility, however, requires materials that can store energy or ensure a stable power distribution with minimum losses. Medical technology in turn needs tiny sensors that can supply their own electricity, for example, through small temperature differences", explains Mücklich.

The Saarbrücken professor identifies several trends that scientists all over Europe are involved in. "Until very recently, materials were increasingly complex and made of a combination of many raw materials. Yet these are becoming more and more scarce, some very expensive, so we now focus on solutions that can be implemented with few materials. These can exhibit very different properties thanks to tailored microstructures. One example is carbon-based materials such as nanotubes, which are extremely strong from a mechanical point of view, but also offer a high electrical conductivity", explains Frank Mücklich. Many material researchers also turn to models from nature that over the course of evolution have developed effective systems, often with very few chemical elements.

The scientist sees another trend in the development of intelligent autonomous systems which supply themselves with energy. Such systems, for example, can "feel" supported loads and send correction signals to the system. They are used in so-called "domotics" for home energy management and monitoring. Materials research has received a big boost in recent years primarily due to new analytical methods. "We can now accurately analyse all materials not only chemically, but also illustrate the lattice structure of the crystals and show which atoms are present at which point in the material. These nanostructures can be simulated and modelled in 2D and 3D", explains Professor Mücklich. These findings allow for a first-ever complete understanding of existing materials. This helps to improve conventional materials and to develop new ones, where properties can be combined that were previously incompatible.

Materials Science and Engineering at the Saarland University campus with its about 300 scientists is one of five nationwide leading locations in this area. The current 13 professorships at the University are closely linked with the researchers at the Leibniz Institute for New Materials and the Fraunhofer Institute for Nondestructive Testing. Several Saarbrücken scientists will present their latest research findings in early September at the biggest European materials research meeting, in Seville.

Questions go to:
Prof. Dr. Frank Mücklich
Chair for functional materials at Saarland Universität
Steinbeis Research Center: Material Engineering Center Saarland (MECS)
Tel. +49 681/302-70500
Mail: muecke@matsci.uni-sb.de
Note to radio journalists: You can make telephone interviews in studio quality with scientists from Saarland University through a broadcast codec (IP connection with direct selection or through the ARD link 106813020001). For interview requests, please contact the press office (+49 681/302-3610).

Friederike Meyer zu Tittingdorf | idw
Further information:
http://euromat2013.fems.eu/
http://www.uni-saarland.de/pressefotos

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>