Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe is committed to textile innovation, led by the UPC’s INTEXTER, to increase the sector’s competitiveness

21.11.2008
The UPC’s Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER) leads the European research project MODSIMTEX (Textile Modeling and Simulation). The project will create new technology that can save textile manufacturers metric tons of raw material, time and energy. A consortium of twelve leading European companies and research laboratories will design an intelligent system that can reduce by 75% the time and the raw materials needed to set up the machinery in assembly lines for high value added products. The new system will be ready in just over three years.

For textile manufacturers who work with technical textiles or other high added value products, one of the most expensive operations, with a direct impact on the final price of the product, is setting up the machines that comprise the assembly line.

Companies that produce extremely high quality textile products with rigorous controls change the type of product they manufacture frequently or every day (some companies manufacture over a thousand different products a year). Therefore, technicians must use trial and error to adapt parameters to the new product and calibrate and reconfigure the machinery continuously. A lot of time, energy and raw materials are invested in this process, which affects the price that the client pays and thus reduces a company’s competitiveness.

MODSIMTEX will create new technology that will lead to 75% less time and raw materials and 7% less energy being used in the process of setting up machinery when a product is changed. This technology, which is based on sophisticated and complex software linked to artificial intelligence systems, can be directly incorporated into any textile company’s assembly line.

The MODSIMTEX project has a total budget of 4.6 million euros, of which the European Union will provide 3.3 million and the UPC’s INTEXTER will directly manage 1.7 million. The rest of the funds will be provided by the other eleven European partners. The project will take three and a half years to complete and was recently approved by the European Union within the Seventh Framework Programme for research and technological development.

An example of an application
One high value added technical textile product is paper bed coating , a textile covering made from non-woven fabric which must be introduced into the large rollers of rotary printing machines and functions as a bed so that newspapers, magazines or other publications are printed to a high quality.

Paper bed coating must have very precise characteristics, because it is changed extremely frequently depending on the type of paper that is used in the rotary printing machine. The machines that make this special kind of coating are enormous, extremely heavy and have to be reconfigured every time the coating they manufacture is changed. The trials needed to reconfigure the machines waste many tons of fabric. The energy consumption and loss of work hours during this process are equally unproductive.

One company that makes this product is Heimbach, a partner in the MODSIMTEX project. Heimbach may change the configuration of its machinery as often as one thousand times a year. When the company implements in its production process the intelligent system developed in the MODSIMTEX project, it will be able to deal with all the variables by computer and incorporate them directly into the production line, which will save tons of raw material, energy and work hours that are wasted in trials and errors. Heimbach could save 7% of the total cost of the manufacture of each of its products, a percentage that is highly significant in this type of industry, as it represents millions of euros a year.

This technology could also be used in companies that manufacture geotextiles, such as the stiffeners that are used in the construction of transport and communication infrastructures. Such products also need large amounts of raw materials and constant change and adaptation to the requirements of use.

According to the project coordinator, José Antonio Tornero, an INTEXTER promoter and researcher, the system could be applied to any product in any production process in any company, even in the fashion sector.

A multidisciplinary project
Participants in the initiative include specialists in the technological areas involved in complex textile production, such as the production of high added value textile products, mathematical modeling, numerical simulation, IT applications for textiles, artificial intelligence, electronic and mechanical control, automatic regulation and online monitoring of the characteristics of the product.

In addition to leading and coordinating the project, INTEXTER works in its own field of technological expertise—spinning—with a team of six people composed of Tornero, Francesc Cano, M. Carme Domènech, José Fresno, Javier Casado and Víctor Fernández. The UPC is also researching the artificial intelligence component of the project, with the participation of the Knowledge Engineering and Machine Learning Group (KEMLg ), which is based in Barcelona.

Fund allocation and project partners
INTEXTER used two criteria to select project partners: they had to be leaders in the sector and in their area of expertise, and companies had to be situated close to a research laboratory associated with the project. Consequently, the consortium is composed of the following university and research institutes: UPC’s INTEXTER, the Technical University of Lodz (PTL), Poland), the Technical University of Liberec (TUL, Czech Republic), the Saxon Textile Research Institute (STFI, Germany) and the German Institute for Textile and Fiber Research in Denkendorf (DITF, Germany). The following companies are also members of the consortium: Spolsin (Czech Republic), TFA (Czech Republic), Heimbach (Germany), Roeders (Germany), Santoni (Italy), Infotex (Spain) and BMS (Belgium).
THE UPC’s INTEXTER
The UPC’s INTEXTER is a research institute situated on the Terrassa Campus. It is currently staffed by almost sixty professionals, including researchers, trainee researchers and administrative and service staff. The Institute has an annual budget of two million euros. Fifty per cent of this budget is provided by the UPC. The remaining funds are obtained through European and national research agreements and specific projects with companies.

INTEXTER occupies a total surface area of 3,900 square meters in different locations: its main headquarters, in the middle of the university campus; the Technical Institute of the Terrassa Campus (in the former Sabadell-Terrassa community); and the Leitat Technology Center. In these sites, nine laboratories work on three basic research lines: textile chemistry, textile mechanics and the environment.

INTEXTER was established 54 years ago, under the auspices of the School of Industrial Engineering of Terrassa (now ETSEIAT). The Institute forms part of the main international research networks in the textile sector, including the European Group for the Development of Textile Research (GEDRT), the European Network of Textile Research Organizations (TEXTRANET) and the Association of Universities for Textiles (AUTEX).

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>