Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe is committed to textile innovation, led by the UPC’s INTEXTER, to increase the sector’s competitiveness

21.11.2008
The UPC’s Institute of Textile Research and Industrial Cooperation of Terrassa (INTEXTER) leads the European research project MODSIMTEX (Textile Modeling and Simulation). The project will create new technology that can save textile manufacturers metric tons of raw material, time and energy. A consortium of twelve leading European companies and research laboratories will design an intelligent system that can reduce by 75% the time and the raw materials needed to set up the machinery in assembly lines for high value added products. The new system will be ready in just over three years.

For textile manufacturers who work with technical textiles or other high added value products, one of the most expensive operations, with a direct impact on the final price of the product, is setting up the machines that comprise the assembly line.

Companies that produce extremely high quality textile products with rigorous controls change the type of product they manufacture frequently or every day (some companies manufacture over a thousand different products a year). Therefore, technicians must use trial and error to adapt parameters to the new product and calibrate and reconfigure the machinery continuously. A lot of time, energy and raw materials are invested in this process, which affects the price that the client pays and thus reduces a company’s competitiveness.

MODSIMTEX will create new technology that will lead to 75% less time and raw materials and 7% less energy being used in the process of setting up machinery when a product is changed. This technology, which is based on sophisticated and complex software linked to artificial intelligence systems, can be directly incorporated into any textile company’s assembly line.

The MODSIMTEX project has a total budget of 4.6 million euros, of which the European Union will provide 3.3 million and the UPC’s INTEXTER will directly manage 1.7 million. The rest of the funds will be provided by the other eleven European partners. The project will take three and a half years to complete and was recently approved by the European Union within the Seventh Framework Programme for research and technological development.

An example of an application
One high value added technical textile product is paper bed coating , a textile covering made from non-woven fabric which must be introduced into the large rollers of rotary printing machines and functions as a bed so that newspapers, magazines or other publications are printed to a high quality.

Paper bed coating must have very precise characteristics, because it is changed extremely frequently depending on the type of paper that is used in the rotary printing machine. The machines that make this special kind of coating are enormous, extremely heavy and have to be reconfigured every time the coating they manufacture is changed. The trials needed to reconfigure the machines waste many tons of fabric. The energy consumption and loss of work hours during this process are equally unproductive.

One company that makes this product is Heimbach, a partner in the MODSIMTEX project. Heimbach may change the configuration of its machinery as often as one thousand times a year. When the company implements in its production process the intelligent system developed in the MODSIMTEX project, it will be able to deal with all the variables by computer and incorporate them directly into the production line, which will save tons of raw material, energy and work hours that are wasted in trials and errors. Heimbach could save 7% of the total cost of the manufacture of each of its products, a percentage that is highly significant in this type of industry, as it represents millions of euros a year.

This technology could also be used in companies that manufacture geotextiles, such as the stiffeners that are used in the construction of transport and communication infrastructures. Such products also need large amounts of raw materials and constant change and adaptation to the requirements of use.

According to the project coordinator, José Antonio Tornero, an INTEXTER promoter and researcher, the system could be applied to any product in any production process in any company, even in the fashion sector.

A multidisciplinary project
Participants in the initiative include specialists in the technological areas involved in complex textile production, such as the production of high added value textile products, mathematical modeling, numerical simulation, IT applications for textiles, artificial intelligence, electronic and mechanical control, automatic regulation and online monitoring of the characteristics of the product.

In addition to leading and coordinating the project, INTEXTER works in its own field of technological expertise—spinning—with a team of six people composed of Tornero, Francesc Cano, M. Carme Domènech, José Fresno, Javier Casado and Víctor Fernández. The UPC is also researching the artificial intelligence component of the project, with the participation of the Knowledge Engineering and Machine Learning Group (KEMLg ), which is based in Barcelona.

Fund allocation and project partners
INTEXTER used two criteria to select project partners: they had to be leaders in the sector and in their area of expertise, and companies had to be situated close to a research laboratory associated with the project. Consequently, the consortium is composed of the following university and research institutes: UPC’s INTEXTER, the Technical University of Lodz (PTL), Poland), the Technical University of Liberec (TUL, Czech Republic), the Saxon Textile Research Institute (STFI, Germany) and the German Institute for Textile and Fiber Research in Denkendorf (DITF, Germany). The following companies are also members of the consortium: Spolsin (Czech Republic), TFA (Czech Republic), Heimbach (Germany), Roeders (Germany), Santoni (Italy), Infotex (Spain) and BMS (Belgium).
THE UPC’s INTEXTER
The UPC’s INTEXTER is a research institute situated on the Terrassa Campus. It is currently staffed by almost sixty professionals, including researchers, trainee researchers and administrative and service staff. The Institute has an annual budget of two million euros. Fifty per cent of this budget is provided by the UPC. The remaining funds are obtained through European and national research agreements and specific projects with companies.

INTEXTER occupies a total surface area of 3,900 square meters in different locations: its main headquarters, in the middle of the university campus; the Technical Institute of the Terrassa Campus (in the former Sabadell-Terrassa community); and the Leitat Technology Center. In these sites, nine laboratories work on three basic research lines: textile chemistry, textile mechanics and the environment.

INTEXTER was established 54 years ago, under the auspices of the School of Industrial Engineering of Terrassa (now ETSEIAT). The Institute forms part of the main international research networks in the textile sector, including the European Group for the Development of Textile Research (GEDRT), the European Network of Textile Research Organizations (TEXTRANET) and the Association of Universities for Textiles (AUTEX).

Rossy Laciana | alfa
Further information:
http://www.upc.edu/saladepremsa

More articles from Materials Sciences:

nachricht Reliable molecular toggle switch developed
30.03.2017 | Karlsruher Institut für Technologie (KIT)

nachricht Researchers shoot for success with simulations of laser pulse-material interactions
29.03.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>